ivan@155
|
1 function [Phiout,unhatnz] = dict_update_REG_fn(Phi,x,unhat,maxIT,eps,cvset)
|
ivan@155
|
2 %% Regularized Dictionary Learning with the constraint on the matrix frobenius norms %%%%%
|
ivan@155
|
3 % Phi = Normalized Initial Dictionary
|
ivan@155
|
4 % x = Signal(x). This can be a vector or a matrix
|
ivan@155
|
5 % unhat = Initial guess for the coefficients
|
ivan@155
|
6 % to = 1/(step size) . It is larger than spectral norm of coefficient matrix x
|
ivan@155
|
7 % eps = Stopping criterion for iterative softthresholding and MM dictionary update
|
ivan@155
|
8 % cvset = Dictionary constraint. 0 = Non convex ||D|| = N, 1 = Convex ||D||<=N
|
ivan@155
|
9 % Phiout = Updated Dictionary
|
ivan@155
|
10 % unhatnz Updated Coefficients (the same as input in this version)
|
ivan@155
|
11
|
ivan@155
|
12 %%
|
ivan@155
|
13 B = Phi;
|
ivan@155
|
14 phim = norm(Phi, 'fro');
|
ivan@155
|
15 K = zeros(size(Phi,1),size(Phi,2));
|
ivan@155
|
16 c = .1 + svds(unhat,1)^2;
|
ivan@155
|
17
|
ivan@155
|
18 %%
|
ivan@155
|
19 i = 1;
|
ivan@155
|
20 while (sum(sum((B-K).^2)) > eps)&&(i<=maxIT)
|
ivan@155
|
21 if i>1
|
ivan@155
|
22 B = K;
|
ivan@155
|
23 end
|
ivan@155
|
24 K = 1/c *(x*unhat' + B*(c*eye(size(B,2))-unhat*unhat'));
|
ivan@155
|
25 Kfn = sum(sum(K.^2));
|
ivan@155
|
26 if cvset == 1,
|
ivan@155
|
27 K = min(1,phim/Kfn)*K; % with convex constraint set
|
ivan@155
|
28 else
|
ivan@155
|
29 K = (phim/Kfn)*K; % with fixed-norm constraint set
|
ivan@155
|
30 end
|
ivan@155
|
31 i = i+1;
|
ivan@155
|
32 end
|
ivan@155
|
33
|
ivan@155
|
34 %% depleted atoms cancellation %%%
|
ivan@155
|
35 [Y,I] = sort(sum(K.^2),'descend');
|
ivan@155
|
36 RR = sum(Y>=0.0001);
|
ivan@155
|
37 Phiout = K(:,I(1:RR));
|
ivan@155
|
38 unhatnz = unhat(I(1:RR),:);
|
ivan@155
|
39 end |