ivan@138
|
1 function [y , Coeff]= inpaintFrame_OMP_Gabor(problemData,param)
|
ivan@138
|
2 % Inpainting method based on OMP using the Gabor dictionary
|
ivan@138
|
3 % generated by Gabor_Dictionary.m. The method jointly selects
|
ivan@138
|
4 % cosine and sine atoms at the same frequency
|
ivan@138
|
5 %
|
ivan@138
|
6 % Usage: y = inpaintFrame_OMP_Gabor(problemData,param)
|
ivan@138
|
7 %
|
ivan@138
|
8 %
|
ivan@138
|
9 % Inputs:
|
ivan@138
|
10 % - problemData.x: observed signal to be inpainted
|
ivan@138
|
11 % - problemData.Imiss: Indices of clean samples
|
ivan@138
|
12 % - param.D - the dictionary matrix (optional if param.D_fun is set)
|
ivan@138
|
13 % - param.D_fun - a function handle that generates the dictionary
|
ivan@138
|
14 % matrix param.D if param.D is not given. See Gabor_Dictionary.m
|
ivan@138
|
15 % - param.wa - Analysis window
|
ivan@138
|
16 %
|
ivan@138
|
17 % Outputs:
|
ivan@138
|
18 % - y: estimated frame
|
ivan@138
|
19 %
|
ivan@138
|
20 %
|
ivan@138
|
21 % -------------------
|
ivan@138
|
22 %
|
ivan@138
|
23 % Audio Inpainting toolbox
|
ivan@138
|
24 % Date: June 28, 2011
|
ivan@138
|
25 % By Valentin Emiya, Amir Adler, Michael Elad, Maria Jafari
|
ivan@138
|
26 % This code is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt).
|
ivan@138
|
27 % ========================================================
|
ivan@138
|
28 % To do next: use a faster implementation of OMP
|
ivan@138
|
29
|
ivan@138
|
30
|
ivan@138
|
31 %% Load data and parameters
|
ivan@138
|
32
|
ivan@138
|
33
|
ivan@138
|
34 x = problemData.x;
|
ivan@138
|
35 IObs = find(~problemData.IMiss);
|
ivan@138
|
36 p.N = length(x);
|
ivan@138
|
37 E2 = param.OMPerr^2;
|
ivan@138
|
38 E2M=E2*length(IObs);
|
ivan@138
|
39 wa = param.wa(param.N);
|
ivan@138
|
40
|
ivan@138
|
41 %% Build and normalized dictionary
|
ivan@138
|
42 % build the dictionary matrix if only the dictionary generation function is given
|
ivan@138
|
43 if ~isfield(param,'D')
|
ivan@138
|
44 param.D = param.D_fun(param);
|
ivan@138
|
45 end
|
ivan@138
|
46 Dict=param.D(IObs,:);
|
ivan@138
|
47 W=1./sqrt(diag(Dict'*Dict));
|
ivan@138
|
48 Dict=Dict*diag(W);
|
ivan@138
|
49 Dict1 = Dict(:,1:end/2);
|
ivan@138
|
50 Dict2 = Dict(:,end/2+1:end);
|
ivan@138
|
51 Dict1Dict2 = sum(Dict1.*Dict2);
|
ivan@138
|
52 n12 = 1./(1-Dict1Dict2.^2);
|
ivan@138
|
53 xObs=x(IObs);
|
ivan@138
|
54
|
ivan@138
|
55 %% OMP iterations
|
ivan@138
|
56 residual=xObs;
|
ivan@138
|
57 maxNumCoef = param.sparsityDegree;
|
ivan@138
|
58 indx = [];
|
ivan@138
|
59 % currResNorm2 = sum(residual.^2);
|
ivan@138
|
60 currResNorm2 = E2M*2; % set a value above the threshold in order to have/force at least one loop executed
|
ivan@138
|
61 j = 0;
|
ivan@138
|
62 while currResNorm2>E2M && j < maxNumCoef,
|
ivan@138
|
63 j = j+1;
|
ivan@138
|
64 proj=residual'*Dict;
|
ivan@138
|
65 proj1 = proj(1:end/2);
|
ivan@138
|
66 proj2 = proj(end/2+1:end);
|
ivan@138
|
67
|
ivan@138
|
68 alpha_j = (proj1-Dict1Dict2.*proj2).*n12;
|
ivan@138
|
69 beta_j = (proj2-Dict1Dict2.*proj1).*n12;
|
ivan@138
|
70
|
ivan@138
|
71 err_j = sum(abs(repmat(residual,1,size(Dict1,2))-Dict1*sparse(diag(alpha_j))-Dict2*sparse(diag(beta_j))).^2);
|
ivan@138
|
72 [dum pos] = min(err_j);
|
ivan@138
|
73
|
ivan@138
|
74 indx(end+1)=pos;
|
ivan@138
|
75 indx(end+1)=pos+size(Dict1,2);
|
ivan@138
|
76 a=pinv(Dict(:,indx(1:2*j)))*xObs;
|
ivan@138
|
77 residual=xObs-Dict(:,indx(1:2*j))*a;
|
ivan@138
|
78 currResNorm2=sum(residual.^2);
|
ivan@138
|
79 end;
|
ivan@138
|
80
|
ivan@138
|
81 %% Frame Reconstruction
|
ivan@138
|
82 indx(length(a)+1:end) = [];
|
ivan@138
|
83
|
ivan@138
|
84 Coeff = sparse(size(param.D,2),1);
|
ivan@138
|
85 if (~isempty(indx))
|
ivan@138
|
86 Coeff(indx) = a;
|
ivan@138
|
87 Coeff = W.*Coeff;
|
ivan@138
|
88 end
|
ivan@138
|
89 y = param.D*Coeff;
|
ivan@138
|
90
|
ivan@138
|
91 return
|
ivan@138
|
92
|
ivan@138
|
93
|