idamnjanovic@6
|
1 %% DICTIONARY LEARNING FOR IMAGE DENOISING
|
idamnjanovic@25
|
2 %
|
ivan@107
|
3
|
idamnjanovic@6
|
4 % This file contains an example of how SMALLbox can be used to test different
|
idamnjanovic@6
|
5 % dictionary learning techniques in Image Denoising problem.
|
idamnjanovic@6
|
6 % It calls generateImageDenoiseProblem that will let you to choose image,
|
idamnjanovic@6
|
7 % add noise and use noisy image to generate training set for dictionary
|
idamnjanovic@6
|
8 % learning.
|
idamnjanovic@6
|
9 % We tested time and psnr for two dictionary learning techniques. This
|
idamnjanovic@6
|
10 % example does not represnt any extensive testing. The aim of this
|
idamnjanovic@6
|
11 % example is just to show how SMALL structure can be used for testing.
|
idamnjanovic@6
|
12 %
|
idamnjanovic@6
|
13 % Two dictionary learning techniques were compared:
|
idamnjanovic@6
|
14 % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient
|
idamnjanovic@6
|
15 % Implementation of the K-SVD Algorithm using Batch Orthogonal
|
idamnjanovic@6
|
16 % Matching Pursuit", Technical Report - CS, Technion, April 2008.
|
idamnjanovic@6
|
17 % - SPAMS - J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online
|
idamnjanovic@6
|
18 % Dictionary Learning for Sparse Coding. International
|
idamnjanovic@6
|
19 % Conference on Machine Learning,Montreal, Canada, 2009
|
ivan@107
|
20
|
idamnjanovic@6
|
21 %
|
ivan@107
|
22 % Centre for Digital Music, Queen Mary, University of London.
|
ivan@107
|
23 % This file copyright 2010 Ivan Damnjanovic.
|
idamnjanovic@6
|
24 %
|
ivan@107
|
25 % This program is free software; you can redistribute it and/or
|
ivan@107
|
26 % modify it under the terms of the GNU General Public License as
|
ivan@107
|
27 % published by the Free Software Foundation; either version 2 of the
|
ivan@107
|
28 % License, or (at your option) any later version. See the file
|
ivan@107
|
29 % COPYING included with this distribution for more information.%%
|
idamnjanovic@6
|
30 %%
|
idamnjanovic@6
|
31
|
idamnjanovic@6
|
32 clear all;
|
idamnjanovic@6
|
33
|
idamnjanovic@6
|
34 %% Load an image
|
idamnjanovic@6
|
35 TMPpath=pwd;
|
idamnjanovic@6
|
36 FS=filesep;
|
idamnjanovic@6
|
37 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
|
idamnjanovic@6
|
38 cd([pathstr1,FS,'data',FS,'images']);
|
idamnjanovic@6
|
39 [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes');
|
idamnjanovic@6
|
40 [pathstr, name, ext, versn] = fileparts(filename);
|
idamnjanovic@6
|
41 test_image = imread(filename);
|
idamnjanovic@6
|
42 test_image = double(test_image);
|
idamnjanovic@6
|
43 cd(TMPpath);
|
idamnjanovic@6
|
44
|
idamnjanovic@6
|
45 % number of different values we want to test
|
idamnjanovic@6
|
46 n =5;
|
idamnjanovic@6
|
47 step = floor((size(test_image,1)-8+1)*(size(test_image,2)-8+1)/n);
|
idamnjanovic@6
|
48 Training_size=zeros(1,n);
|
idamnjanovic@6
|
49 time = zeros(2,n);
|
idamnjanovic@6
|
50 psnr = zeros(2,n);
|
idamnjanovic@6
|
51 for i=1:n
|
idamnjanovic@6
|
52
|
idamnjanovic@6
|
53 % Here we want to test time spent and quality of denoising for
|
idamnjanovic@6
|
54 % different sizes of training sample.
|
idamnjanovic@6
|
55 Training_size(i)=i*step;
|
idamnjanovic@6
|
56
|
idamnjanovic@6
|
57 SMALL.Problem = generateImageDenoiseProblem(test_image,Training_size(i));
|
idamnjanovic@6
|
58 SMALL.Problem.name=name;
|
idamnjanovic@6
|
59 %%
|
idamnjanovic@6
|
60 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary
|
idamnjanovic@6
|
61
|
idamnjanovic@6
|
62 % Initialising Dictionary structure
|
idamnjanovic@6
|
63 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@6
|
64 % to zero values
|
idamnjanovic@6
|
65
|
idamnjanovic@6
|
66 SMALL.DL(1)=SMALL_init_DL();
|
idamnjanovic@6
|
67
|
idamnjanovic@6
|
68 % Defining the parameters needed for dictionary learning
|
idamnjanovic@6
|
69
|
idamnjanovic@6
|
70 SMALL.DL(1).toolbox = 'KSVD';
|
idamnjanovic@6
|
71 SMALL.DL(1).name = 'ksvd';
|
idamnjanovic@6
|
72
|
idamnjanovic@6
|
73 % Defining the parameters for KSVD
|
idamnjanovic@6
|
74 % In this example we are learning 256 atoms in 20 iterations, so that
|
idamnjanovic@6
|
75 % every patch in the training set can be represented with target error in
|
idamnjanovic@6
|
76 % L2-norm (EData)
|
idamnjanovic@6
|
77 % Type help ksvd in MATLAB prompt for more options.
|
idamnjanovic@6
|
78
|
idamnjanovic@6
|
79 Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
|
ivan@107
|
80 maxatoms = floor(prod(SMALL.Problem.blocksize)/2);
|
ivan@107
|
81
|
idamnjanovic@6
|
82 SMALL.DL(1).param=struct(...
|
idamnjanovic@6
|
83 'Edata', Edata,...
|
idamnjanovic@6
|
84 'initdict', SMALL.Problem.initdict,...
|
idamnjanovic@6
|
85 'dictsize', SMALL.Problem.p,...
|
idamnjanovic@19
|
86 'iternum', 20);
|
idamnjanovic@19
|
87 %'memusage', 'high');
|
idamnjanovic@6
|
88
|
idamnjanovic@6
|
89 % Learn the dictionary
|
idamnjanovic@6
|
90
|
idamnjanovic@6
|
91 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
|
idamnjanovic@6
|
92
|
idamnjanovic@6
|
93 % Set SMALL.Problem.A dictionary
|
idamnjanovic@6
|
94 % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@6
|
95 % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@6
|
96 % solver structures)
|
idamnjanovic@6
|
97
|
idamnjanovic@6
|
98 SMALL.Problem.A = SMALL.DL(1).D;
|
ivan@107
|
99 SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem);
|
idamnjanovic@6
|
100
|
idamnjanovic@6
|
101 %%
|
idamnjanovic@6
|
102 % Initialising solver structure
|
idamnjanovic@6
|
103 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
104 % reconstructed and time) to zero values
|
idamnjanovic@6
|
105
|
idamnjanovic@6
|
106
|
idamnjanovic@6
|
107 SMALL.solver(1)=SMALL_init_solver;
|
idamnjanovic@6
|
108
|
idamnjanovic@6
|
109 % Defining the parameters needed for denoising
|
idamnjanovic@6
|
110
|
idamnjanovic@6
|
111 SMALL.solver(1).toolbox='ompbox';
|
ivan@107
|
112 SMALL.solver(1).name='omp2';
|
idamnjanovic@6
|
113
|
ivan@107
|
114 SMALL.solver(1).param=struct(...
|
ivan@107
|
115 'epsilon',Edata,...
|
ivan@107
|
116 'maxatoms', maxatoms);
|
ivan@107
|
117
|
ivan@107
|
118 % Denoising the image - find the sparse solution in the learned
|
ivan@107
|
119 % dictionary for all patches in the image and the end it uses
|
ivan@107
|
120 % reconstruction function to reconstruct the patches and put them into a
|
ivan@107
|
121 % denoised image
|
ivan@107
|
122
|
ivan@107
|
123 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
|
ivan@107
|
124
|
ivan@107
|
125 % Show PSNR after reconstruction
|
ivan@107
|
126
|
ivan@107
|
127 SMALL.solver(1).reconstructed.psnr
|
ivan@107
|
128
|
idamnjanovic@6
|
129
|
idamnjanovic@6
|
130 %%
|
idamnjanovic@6
|
131 % Use SPAMS Online Dictionary Learning Algorithm
|
idamnjanovic@6
|
132 % to Learn overcomplete dictionary (Julien Mairal 2009)
|
idamnjanovic@6
|
133 % (If you have not installed SPAMS please comment the following two cells)
|
idamnjanovic@6
|
134
|
idamnjanovic@6
|
135 % Initialising Dictionary structure
|
idamnjanovic@6
|
136 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@6
|
137 % to zero values
|
idamnjanovic@6
|
138
|
idamnjanovic@6
|
139 SMALL.DL(2)=SMALL_init_DL();
|
idamnjanovic@6
|
140
|
idamnjanovic@6
|
141 % Defining fields needed for dictionary learning
|
idamnjanovic@6
|
142
|
idamnjanovic@6
|
143 SMALL.DL(2).toolbox = 'SPAMS';
|
idamnjanovic@6
|
144 SMALL.DL(2).name = 'mexTrainDL';
|
idamnjanovic@6
|
145
|
idamnjanovic@6
|
146 % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters.
|
idamnjanovic@6
|
147
|
idamnjanovic@6
|
148 SMALL.DL(2).param=struct(...
|
idamnjanovic@6
|
149 'D', SMALL.Problem.initdict,...
|
idamnjanovic@6
|
150 'K', SMALL.Problem.p,...
|
idamnjanovic@6
|
151 'lambda', 2,...
|
idamnjanovic@6
|
152 'iter', 300,...
|
idamnjanovic@6
|
153 'mode', 3,...
|
idamnjanovic@6
|
154 'modeD', 0 );
|
idamnjanovic@6
|
155
|
idamnjanovic@6
|
156 % Learn the dictionary
|
idamnjanovic@6
|
157
|
idamnjanovic@6
|
158 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
|
idamnjanovic@6
|
159
|
idamnjanovic@6
|
160 % Set SMALL.Problem.A dictionary
|
idamnjanovic@6
|
161 % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@6
|
162 % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@6
|
163 % solver structures)
|
idamnjanovic@6
|
164
|
idamnjanovic@6
|
165 SMALL.Problem.A = SMALL.DL(2).D;
|
ivan@107
|
166 SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem);
|
idamnjanovic@6
|
167
|
idamnjanovic@6
|
168 %%
|
idamnjanovic@6
|
169 % Initialising solver structure
|
idamnjanovic@6
|
170 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
171 % reconstructed and time) to zero values
|
idamnjanovic@6
|
172
|
idamnjanovic@6
|
173 SMALL.solver(2)=SMALL_init_solver;
|
idamnjanovic@6
|
174
|
idamnjanovic@6
|
175 % Defining the parameters needed for denoising
|
idamnjanovic@6
|
176
|
idamnjanovic@6
|
177 SMALL.solver(2).toolbox='ompbox';
|
ivan@107
|
178 SMALL.solver(2).name='omp2';
|
ivan@107
|
179 SMALL.solver(2).param=struct(...
|
ivan@107
|
180 'epsilon',Edata,...
|
ivan@107
|
181 'maxatoms', maxatoms);
|
ivan@107
|
182
|
ivan@107
|
183 % Denoising the image - find the sparse solution in the learned
|
ivan@107
|
184 % dictionary for all patches in the image and the end it uses
|
ivan@107
|
185 % reconstruction function to reconstruct the patches and put them into a
|
ivan@107
|
186 % denoised image
|
ivan@107
|
187
|
ivan@107
|
188 SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
|
ivan@107
|
189
|
idamnjanovic@6
|
190
|
idamnjanovic@6
|
191
|
idamnjanovic@6
|
192
|
idamnjanovic@6
|
193 %% show results %%
|
idamnjanovic@6
|
194 % This will show denoised images and dictionaries for all training sets.
|
idamnjanovic@6
|
195 % If you are not interested to see them and do not want clutter your
|
idamnjanovic@6
|
196 % screen comment following line
|
idamnjanovic@6
|
197
|
idamnjanovic@6
|
198 SMALL_ImgDeNoiseResult(SMALL);
|
idamnjanovic@6
|
199
|
idamnjanovic@6
|
200 time(1,i) = SMALL.DL(1).time;
|
idamnjanovic@6
|
201 psnr(1,i) = SMALL.solver(1).reconstructed.psnr;
|
idamnjanovic@6
|
202
|
idamnjanovic@6
|
203 time(2,i) = SMALL.DL(2).time;
|
idamnjanovic@6
|
204 psnr(2,i) = SMALL.solver(2).reconstructed.psnr;
|
idamnjanovic@6
|
205
|
idamnjanovic@6
|
206 clear SMALL
|
idamnjanovic@6
|
207 end
|
idamnjanovic@6
|
208
|
idamnjanovic@6
|
209 %% show time and psnr %%
|
idamnjanovic@6
|
210 figure('Name', 'KSVD vs SPAMS');
|
idamnjanovic@6
|
211
|
idamnjanovic@6
|
212 subplot(1,2,1); plot(Training_size, time(1,:), 'ro-', Training_size, time(2,:), 'b*-');
|
idamnjanovic@6
|
213 legend('KSVD','SPAMS',0);
|
idamnjanovic@6
|
214 title('Time vs Training size');
|
idamnjanovic@19
|
215 xlabel('Training Size (Num. of patches)');
|
idamnjanovic@19
|
216 ylabel('Time(s)');
|
idamnjanovic@6
|
217 subplot(1,2,2); plot(Training_size, psnr(1,:), 'ro-', Training_size, psnr(2,:), 'b*-');
|
idamnjanovic@6
|
218 legend('KSVD','SPAMS',0);
|
idamnjanovic@19
|
219 title('PSNR vs Training size');
|
idamnjanovic@19
|
220 xlabel('Training Size (Num. of patches)');
|
idamnjanovic@19
|
221 ylabel('PSNR(dB)'); |