idamnjanovic@6
|
1 %% DICTIONARY LEARNING FOR AUTOMATIC MUSIC TRANSCRIPTION EXAMPLE 1
|
idamnjanovic@25
|
2 %
|
idamnjanovic@6
|
3 % This file contains an example of how SMALLbox can be used to test diferent
|
idamnjanovic@6
|
4 % dictionary learning techniques in Automatic Music Transcription problem.
|
idamnjanovic@6
|
5 % It calls generateAMT_Learning_Problem that will let you to choose midi,
|
idamnjanovic@6
|
6 % wave or mat file to be transcribe. If file is midi it will be first
|
idamnjanovic@6
|
7 % converted to wave and original midi file will be used for comparison with
|
idamnjanovic@6
|
8 % results of dictionary learning and reconstruction.
|
idamnjanovic@6
|
9 % The function will generarte the Problem structure that is used to learn
|
idamnjanovic@6
|
10 % Problem.p notes spectrograms from training set Problem.b using
|
idamnjanovic@6
|
11 % dictionary learning technique defined in DL structure.
|
ivan@107
|
12
|
idamnjanovic@6
|
13 %
|
ivan@107
|
14 % Centre for Digital Music, Queen Mary, University of London.
|
ivan@107
|
15 % This file copyright 2010 Ivan Damnjanovic.
|
ivan@107
|
16 %
|
ivan@107
|
17 % This program is free software; you can redistribute it and/or
|
ivan@107
|
18 % modify it under the terms of the GNU General Public License as
|
ivan@107
|
19 % published by the Free Software Foundation; either version 2 of the
|
ivan@107
|
20 % License, or (at your option) any later version. See the file
|
ivan@107
|
21 % COPYING included with this distribution for more information.
|
idamnjanovic@6
|
22 %%
|
idamnjanovic@6
|
23
|
idamnjanovic@6
|
24 clear;
|
idamnjanovic@6
|
25
|
idamnjanovic@6
|
26
|
idamnjanovic@6
|
27 % Defining Automatic Transcription of Piano tune as Dictionary Learning
|
idamnjanovic@6
|
28 % Problem
|
idamnjanovic@6
|
29
|
idamnjanovic@6
|
30 SMALL.Problem = generateAMT_Learning_Problem();
|
idamnjanovic@6
|
31
|
idamnjanovic@6
|
32 %%
|
idamnjanovic@6
|
33 % Use KSVD Dictionary Learning Algorithm to Learn 88 notes (defined in
|
idamnjanovic@6
|
34 % SMALL.Problem.p) using sparsity constrain only
|
idamnjanovic@6
|
35
|
idamnjanovic@6
|
36 % Initialising Dictionary structure
|
idamnjanovic@6
|
37 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@6
|
38 % to zero values
|
idamnjanovic@6
|
39
|
idamnjanovic@6
|
40 SMALL.DL(1)=SMALL_init_DL();
|
idamnjanovic@6
|
41
|
idamnjanovic@6
|
42 % Defining fields needed for dictionary learning
|
idamnjanovic@6
|
43
|
idamnjanovic@6
|
44 SMALL.DL(1).toolbox = 'KSVD';
|
idamnjanovic@6
|
45 SMALL.DL(1).name = 'ksvd';
|
idamnjanovic@6
|
46 % Defining the parameters for KSVD
|
idamnjanovic@6
|
47 % In this example we are learning 88 atoms in 100 iterations, so that
|
ivan@107
|
48 % every frame in the training set can be represented with maximum Tdata
|
idamnjanovic@6
|
49 % dictionary elements. Type help ksvd in MATLAB prompt for more options.
|
idamnjanovic@6
|
50
|
idamnjanovic@6
|
51 SMALL.DL(1).param=struct(...
|
ivan@107
|
52 'Tdata', 3,...
|
idamnjanovic@6
|
53 'dictsize', SMALL.Problem.p,...
|
ivan@107
|
54 'iternum', 50);
|
idamnjanovic@6
|
55
|
idamnjanovic@6
|
56 % Learn the dictionary
|
idamnjanovic@6
|
57
|
idamnjanovic@6
|
58 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
|
idamnjanovic@6
|
59
|
idamnjanovic@6
|
60 % Set SMALL.Problem.A dictionary and reconstruction function
|
idamnjanovic@6
|
61 % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@6
|
62 % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@6
|
63 % solver structures)
|
idamnjanovic@6
|
64
|
idamnjanovic@6
|
65 SMALL.Problem.A = SMALL.DL(1).D;
|
idamnjanovic@6
|
66 SMALL.Problem.reconstruct = @(x) SMALL_midiGenerate(x, SMALL.Problem);
|
idamnjanovic@6
|
67
|
idamnjanovic@6
|
68 %%
|
idamnjanovic@6
|
69 % Initialising solver structure
|
idamnjanovic@6
|
70 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
71 % reconstructed and time) to zero values
|
idamnjanovic@6
|
72 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS
|
idamnjanovic@6
|
73 % algorithm is used for representation of training set in the learned
|
idamnjanovic@6
|
74 % dictionary.
|
idamnjanovic@6
|
75
|
idamnjanovic@6
|
76 SMALL.solver(1)=SMALL_init_solver;
|
idamnjanovic@6
|
77
|
idamnjanovic@6
|
78 % Defining the parameters needed for sparse representation
|
idamnjanovic@6
|
79
|
idamnjanovic@25
|
80 SMALL.solver(1).toolbox='SMALL';
|
idamnjanovic@25
|
81 SMALL.solver(1).name='SMALL_cgp';
|
idamnjanovic@6
|
82
|
idamnjanovic@6
|
83 % Here we use mexLasso mode=2, with lambda=2, lambda2=0 and positivity
|
idamnjanovic@6
|
84 % constrain (type 'help mexLasso' for more information about modes):
|
idamnjanovic@6
|
85 %
|
idamnjanovic@6
|
86 % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2
|
idamnjanovic@6
|
87
|
idamnjanovic@25
|
88 SMALL.solver(1).param='20, 1e-2';
|
idamnjanovic@25
|
89 % struct(...
|
idamnjanovic@25
|
90 % 'lambda', 2,...
|
idamnjanovic@25
|
91 % 'pos', 1,...
|
idamnjanovic@25
|
92 % 'mode', 2);
|
idamnjanovic@6
|
93
|
idamnjanovic@6
|
94 % Call SMALL_soolve to represent the signal in the given dictionary.
|
idamnjanovic@6
|
95 % As a final command SMALL_solve will call above defined reconstruction
|
idamnjanovic@6
|
96 % function to reconstruct the training set (Problem.b) in the learned
|
idamnjanovic@6
|
97 % dictionary (Problem.A)
|
idamnjanovic@6
|
98
|
idamnjanovic@6
|
99 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
|
idamnjanovic@6
|
100
|
idamnjanovic@6
|
101 %%
|
idamnjanovic@6
|
102 % Analysis of the result of automatic music transcription. If groundtruth
|
idamnjanovic@6
|
103 % exists, we can compare transcribed notes and original and get usual
|
idamnjanovic@6
|
104 % True Positives, False Positives and False Negatives measures.
|
idamnjanovic@6
|
105
|
idamnjanovic@6
|
106 if ~isempty(SMALL.Problem.notesOriginal)
|
idamnjanovic@6
|
107 AMT_res(1) = AMT_analysis(SMALL.Problem, SMALL.solver(1));
|
idamnjanovic@6
|
108 end
|
idamnjanovic@6
|
109
|
idamnjanovic@6
|
110
|
idamnjanovic@6
|
111 %%
|
idamnjanovic@6
|
112
|
ivan@107
|
113 % Here we solve the same problem using non-negative sparse coding with
|
ivan@107
|
114 % SPAMS online dictionary learning (Julien Mairal 2009)
|
ivan@107
|
115 %
|
ivan@107
|
116
|
ivan@107
|
117 % Initialising Dictionary structure
|
ivan@107
|
118 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
ivan@107
|
119 % to zero values
|
ivan@107
|
120
|
ivan@107
|
121 SMALL.DL(2)=SMALL_init_DL();
|
ivan@107
|
122
|
ivan@107
|
123
|
ivan@107
|
124 % Defining fields needed for dictionary learning
|
ivan@107
|
125
|
ivan@107
|
126 SMALL.DL(2).toolbox = 'SPAMS';
|
ivan@107
|
127 SMALL.DL(2).name = 'mexTrainDL';
|
ivan@107
|
128
|
ivan@107
|
129 % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters.
|
ivan@107
|
130
|
ivan@107
|
131 SMALL.DL(2).param=struct(...
|
ivan@107
|
132 'K', SMALL.Problem.p,...
|
ivan@107
|
133 'lambda', 3,...
|
ivan@107
|
134 'iter', 300,...
|
ivan@107
|
135 'posAlpha', 1,...
|
ivan@107
|
136 'posD', 1,...
|
ivan@107
|
137 'whiten', 0,...
|
ivan@107
|
138 'mode', 2);
|
ivan@107
|
139
|
ivan@107
|
140 % Learn the dictionary
|
ivan@107
|
141
|
ivan@107
|
142 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
|
ivan@107
|
143
|
ivan@107
|
144 % Set SMALL.Problem.A dictionary and reconstruction function
|
ivan@107
|
145 % (backward compatiblity with SPARCO: solver structure communicate
|
ivan@107
|
146 % only with Problem structure, ie no direct communication between DL and
|
ivan@107
|
147 % solver structures)
|
ivan@107
|
148
|
ivan@107
|
149 SMALL.Problem.A = SMALL.DL(2).D;
|
ivan@107
|
150 SMALL.Problem.reconstruct=@(x) SMALL_midiGenerate(x, SMALL.Problem);
|
ivan@107
|
151
|
ivan@107
|
152 %%
|
ivan@107
|
153 % Initialising solver structure
|
ivan@107
|
154 % Setting solver structure fields (toolbox, name, param, solution,
|
ivan@107
|
155 % reconstructed and time) to zero values
|
ivan@107
|
156 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS
|
ivan@107
|
157 % algorithm is used for representation of training set in the learned
|
ivan@107
|
158 % dictionary.
|
ivan@107
|
159
|
ivan@107
|
160 SMALL.solver(2)=SMALL_init_solver;
|
ivan@107
|
161
|
ivan@107
|
162 % Defining the parameters needed for sparse representation
|
ivan@107
|
163
|
ivan@107
|
164 SMALL.solver(2).toolbox='SPAMS';
|
ivan@107
|
165 SMALL.solver(2).name='mexLasso';
|
ivan@107
|
166
|
ivan@107
|
167 % Here we use mexLasso mode=2, with lambda=3, lambda2=0 and positivity
|
ivan@107
|
168 % constrain (type 'help mexLasso' for more information about modes):
|
ivan@107
|
169 %
|
ivan@107
|
170 % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2
|
ivan@107
|
171
|
ivan@107
|
172 SMALL.solver(2).param=struct('lambda', 3, 'pos', 1, 'mode', 2);
|
ivan@107
|
173
|
ivan@107
|
174 % Call SMALL_soolve to represent the signal in the given dictionary.
|
ivan@107
|
175 % As a final command SMALL_solve will call above defined reconstruction
|
ivan@107
|
176 % function to reconstruct the training set (Problem.b) in the learned
|
ivan@107
|
177 % dictionary (Problem.A)
|
ivan@107
|
178
|
ivan@107
|
179 SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
|
ivan@107
|
180
|
ivan@107
|
181 %%
|
ivan@107
|
182 % Analysis of the result of automatic music transcription. If groundtruth
|
ivan@107
|
183 % exists, we can compare transcribed notes and original and get usual
|
ivan@107
|
184 % True Positives, False Positives and False Negatives measures.
|
ivan@107
|
185
|
ivan@107
|
186 if ~isempty(SMALL.Problem.notesOriginal)
|
ivan@107
|
187 AMT_res(2) = AMT_analysis(SMALL.Problem, SMALL.solver(2));
|
ivan@107
|
188 end
|
idamnjanovic@6
|
189
|
idamnjanovic@6
|
190 %%
|
idamnjanovic@6
|
191 % Plot results and save midi files
|
idamnjanovic@6
|
192
|
idamnjanovic@6
|
193 if ~isempty(SMALL.Problem.notesOriginal)
|
idamnjanovic@6
|
194 figAMT = SMALL_AMT_plot(SMALL, AMT_res);
|
idamnjanovic@6
|
195 else
|
idamnjanovic@6
|
196 figAMT = figure('Name', 'Automatic Music Transcription KSVD vs SPAMS');
|
idamnjanovic@6
|
197 subplot(2,1,1); plot(SMALL.solver(1).reconstructed.notes(:,5), SMALL.solver(1).reconstructed.notes(:,3), 'kd ');
|
idamnjanovic@6
|
198 title (sprintf('%s dictionary in %.2f s', SMALL.DL(1).name, SMALL.DL(1).time));
|
idamnjanovic@6
|
199 xlabel('Time');
|
idamnjanovic@6
|
200 ylabel('Note Number');
|
idamnjanovic@6
|
201 subplot(2,1,2); plot(SMALL.solver(2).reconstructed.notes(:,5), SMALL.solver(2).reconstructed.notes(:,3), 'b* ');
|
idamnjanovic@6
|
202 title (sprintf('%s dictionary in %.2f s', SMALL.DL(2).name, SMALL.DL(2).time));
|
idamnjanovic@6
|
203 xlabel('Time');
|
idamnjanovic@6
|
204 ylabel('Note Number');
|
idamnjanovic@6
|
205 end
|
idamnjanovic@6
|
206
|
idamnjanovic@6
|
207 FS=filesep;
|
idamnjanovic@6
|
208
|
idamnjanovic@6
|
209 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
|
idamnjanovic@6
|
210 cd([pathstr1,FS,'results']);
|
idamnjanovic@6
|
211
|
idamnjanovic@6
|
212 [filename,pathname] = uiputfile({' *.mid;' },'Save KSVD result midi');
|
idamnjanovic@6
|
213 if filename~=0 writemidi(SMALL.solver(1).reconstructed.midi, [pathname,FS,filename]);end
|
idamnjanovic@6
|
214
|
idamnjanovic@6
|
215 [filename,pathname] = uiputfile({' *.mid;' },'Save SPAMS result midi');
|
idamnjanovic@6
|
216 if filename~=0 writemidi(SMALL.solver(2).reconstructed.midi, [pathname,FS,filename]);end
|
idamnjanovic@6
|
217
|
idamnjanovic@6
|
218 [filename,pathname] = uiputfile({' *.fig;' },'Save KSVD vs SPAMS AMT figure');
|
idamnjanovic@6
|
219 if filename~=0 saveas(figAMT, [pathname,FS,filename]);end
|
idamnjanovic@6
|
220
|
idamnjanovic@6
|
221
|
idamnjanovic@6
|
222
|