idamnjanovic@8
|
1 function DL = SMALL_learn(Problem,DL)
|
idamnjanovic@8
|
2 %%% SMALL Dictionary Learning
|
idamnjanovic@8
|
3 % Ivan Damnjanovic 2009
|
idamnjanovic@8
|
4 % Function gets as input Problem and Dictionary Learning (DL) structures
|
idamnjanovic@8
|
5 % In Problem structure field b with the training set needs to be defined
|
idamnjanovic@8
|
6 % In DL fields with name of the toolbox and solver, and parameters file
|
idamnjanovic@8
|
7 % for particular dictionary learning technique needs to be present.
|
idamnjanovic@8
|
8 %
|
idamnjanovic@8
|
9 % Outputs are Learned dictionary and time spent as a part of DL structure
|
idamnjanovic@8
|
10 %%
|
idamnjanovic@8
|
11
|
idamnjanovic@8
|
12 fprintf('\nStarting Dictionary Learning %s... \n', DL.name);
|
idamnjanovic@8
|
13 start=cputime;
|
idamnjanovic@8
|
14
|
idamnjanovic@8
|
15 if strcmpi(DL.toolbox,'KSVD')
|
idamnjanovic@8
|
16 param=DL.param;
|
idamnjanovic@8
|
17 param.data=Problem.b;
|
idamnjanovic@8
|
18
|
idamnjanovic@8
|
19 D = eval([DL.name,'(param, ''t'', 5);']);
|
idamnjanovic@8
|
20 elseif strcmpi(DL.toolbox,'KSVDS')
|
idamnjanovic@8
|
21 param=DL.param;
|
idamnjanovic@8
|
22 param.data=Problem.b;
|
idamnjanovic@8
|
23
|
idamnjanovic@8
|
24 D = eval([DL.name,'(param, ''t'', 5);']);
|
idamnjanovic@8
|
25 elseif strcmpi(DL.toolbox,'SPAMS')
|
idamnjanovic@8
|
26
|
idamnjanovic@8
|
27 X = Problem.b;
|
idamnjanovic@8
|
28 param=DL.param;
|
idamnjanovic@8
|
29
|
idamnjanovic@8
|
30 D = eval([DL.name,'(X, param);']);
|
idamnjanovic@8
|
31 % As some versions of SPAMS does not produce unit norm column
|
idamnjanovic@8
|
32 % dictionaries, we need to make sure that columns are normalised to
|
idamnjanovic@8
|
33 % unit lenght.
|
idamnjanovic@8
|
34
|
idamnjanovic@8
|
35 for i = 1: size(D,2)
|
idamnjanovic@8
|
36 D(:,i)=D(:,i)/norm(D(:,i));
|
idamnjanovic@8
|
37 end
|
idamnjanovic@8
|
38
|
idamnjanovic@8
|
39 % To introduce new dictionary learning technique put the files in
|
idamnjanovic@8
|
40 % your Matlab path. Next, unique name <TolboxID> for your toolbox needs
|
idamnjanovic@8
|
41 % to be defined and also prefferd API for toolbox functions <Preffered_API>
|
idamnjanovic@8
|
42 %
|
idamnjanovic@8
|
43 % elseif strcmpi(DL.toolbox,'<ToolboxID>')
|
idamnjanovic@8
|
44 % % This is an example of API that can be used:
|
idamnjanovic@8
|
45 % % - get training set from Problem part of structure
|
idamnjanovic@8
|
46 % % - assign parameters defined in the main program
|
idamnjanovic@8
|
47 %
|
idamnjanovic@8
|
48 % X = Problem.b;
|
idamnjanovic@8
|
49 % param=DL.param;
|
idamnjanovic@8
|
50 %
|
idamnjanovic@8
|
51 % % - Evaluate the function (DL.name - defined in the main) with
|
idamnjanovic@8
|
52 % % parameters given above
|
idamnjanovic@8
|
53 %
|
idamnjanovic@8
|
54 % D = eval([DL.name,'(<Preffered_API>);']);
|
idamnjanovic@8
|
55
|
idamnjanovic@8
|
56 else
|
idamnjanovic@8
|
57 printf('\nToolbox has not been registered. Please change SMALL_learn file.\n');
|
idamnjanovic@8
|
58 return
|
idamnjanovic@8
|
59 end
|
idamnjanovic@8
|
60
|
idamnjanovic@8
|
61 %%
|
idamnjanovic@8
|
62 % Dictionary Learning time
|
idamnjanovic@8
|
63
|
idamnjanovic@8
|
64 DL.time = cputime - start;
|
idamnjanovic@8
|
65 fprintf('\n%s finished task in %2f seconds. \n', DL.name, DL.time);
|
idamnjanovic@8
|
66
|
idamnjanovic@8
|
67 % If dictionary is given as a sparse matrix change it to full
|
idamnjanovic@8
|
68
|
idamnjanovic@8
|
69 DL.D = full(D);
|
idamnjanovic@8
|
70
|
idamnjanovic@8
|
71 end
|
idamnjanovic@8
|
72 |