annotate examples/ALPS solvers tests/SMALL_ImgDenoise_DL_test_KSVDvsTwoStepALPSandMahile.m @ 188:2f5ce7c8792a danieleb

removed check for wLength as not necessary.
author daniele@danieleb.com
date Wed, 15 Feb 2012 11:02:45 +0100
parents f42aa8bcb82f
children 9c418bea7f6a
rev   line source
ivan@161 1 %% Dictionary Learning for Image Denoising - KSVD vs Recursive Least Squares
ivan@161 2 %
ivan@161 3 % This file contains an example of how SMALLbox can be used to test different
ivan@161 4 % dictionary learning techniques in Image Denoising problem.
ivan@161 5 % It calls generateImageDenoiseProblem that will let you to choose image,
ivan@161 6 % add noise and use noisy image to generate training set for dictionary
ivan@161 7 % learning.
ivan@161 8 % Two dictionary learning techniques were compared:
ivan@161 9 % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient
ivan@161 10 % Implementation of the K-SVD Algorithm using Batch Orthogonal
ivan@161 11 % Matching Pursuit", Technical Report - CS, Technion, April 2008.
ivan@161 12 % - RLS-DLA - Skretting, K.; Engan, K.; , "Recursive Least Squares
ivan@161 13 % Dictionary Learning Algorithm," Signal Processing, IEEE Transactions on,
ivan@161 14 % vol.58, no.4, pp.2121-2130, April 2010
ivan@161 15 %
ivan@161 16
ivan@161 17
ivan@161 18 % Centre for Digital Music, Queen Mary, University of London.
ivan@161 19 % This file copyright 2011 Ivan Damnjanovic.
ivan@161 20 %
ivan@161 21 % This program is free software; you can redistribute it and/or
ivan@161 22 % modify it under the terms of the GNU General Public License as
ivan@161 23 % published by the Free Software Foundation; either version 2 of the
ivan@161 24 % License, or (at your option) any later version. See the file
ivan@161 25 % COPYING included with this distribution for more information.
ivan@161 26 %
ivan@161 27 %%
ivan@161 28
ivan@161 29
ivan@161 30
ivan@161 31 % If you want to load the image outside of generateImageDenoiseProblem
ivan@161 32 % function uncomment following lines. This can be useful if you want to
ivan@161 33 % denoise more then one image for example.
ivan@161 34 % Here we are loading test_image.mat that contains structure with 5 images : lena,
ivan@161 35 % barbara,boat, house and peppers.
ivan@161 36 clear;
ivan@161 37 TMPpath=pwd;
ivan@161 38 FS=filesep;
ivan@161 39 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
ivan@161 40 cd([pathstr1,FS,'data',FS,'images']);
ivan@161 41 load('test_image.mat');
ivan@161 42 cd(TMPpath);
ivan@161 43
ivan@161 44 % Deffining the noise levels that we want to test
ivan@161 45
ivan@161 46 noise_level=[10 20 25 50 100];
ivan@161 47
ivan@161 48 % Here we loop through different noise levels and images
ivan@161 49
ivan@161 50 for noise_ind=4:4
ivan@161 51 for im_num=1:1
ivan@161 52
ivan@161 53 % Defining Image Denoising Problem as Dictionary Learning
ivan@161 54 % Problem. As an input we set the number of training patches.
ivan@161 55
ivan@161 56 SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind));
ivan@161 57 SMALL.Problem.name=int2str(im_num);
ivan@161 58
ivan@161 59 Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
ivan@161 60 maxatoms = floor(prod(SMALL.Problem.blocksize)/2);
ivan@161 61
ivan@161 62 % results structure is to store all results
ivan@161 63
ivan@161 64 results(noise_ind,im_num).noisy_psnr=SMALL.Problem.noisy_psnr;
ivan@161 65
ivan@161 66 %%
ivan@161 67 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary
ivan@161 68
ivan@161 69 % Initialising Dictionary structure
ivan@161 70 % Setting Dictionary structure fields (toolbox, name, param, D and time)
ivan@161 71 % to zero values
ivan@161 72
ivan@161 73 SMALL.DL(1)=SMALL_init_DL();
ivan@161 74
ivan@161 75 % Defining the parameters needed for dictionary learning
ivan@161 76
ivan@161 77 SMALL.DL(1).toolbox = 'KSVD';
ivan@161 78 SMALL.DL(1).name = 'ksvd';
ivan@161 79
ivan@161 80 % Defining the parameters for KSVD
ivan@161 81 % In this example we are learning 256 atoms in 20 iterations, so that
ivan@161 82 % every patch in the training set can be represented with target error in
ivan@161 83 % L2-norm (Edata)
ivan@161 84 % Type help ksvd in MATLAB prompt for more options.
ivan@161 85
ivan@161 86
ivan@161 87 SMALL.DL(1).param=struct(...
ivan@161 88 'Edata', Edata,...
ivan@161 89 'initdict', SMALL.Problem.initdict,...
ivan@161 90 'dictsize', SMALL.Problem.p,...
ivan@161 91 'exact', 1, ...
ivan@161 92 'iternum', 20,...
ivan@161 93 'memusage', 'high');
ivan@161 94
ivan@161 95 % Learn the dictionary
ivan@161 96
ivan@161 97 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
ivan@161 98
ivan@161 99 % Set SMALL.Problem.A dictionary
ivan@161 100 % (backward compatiblity with SPARCO: solver structure communicate
ivan@161 101 % only with Problem structure, ie no direct communication between DL and
ivan@161 102 % solver structures)
ivan@161 103
ivan@161 104 SMALL.Problem.A = SMALL.DL(1).D;
ivan@161 105 SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
ivan@161 106
ivan@161 107 %%
ivan@161 108 % Initialising solver structure
ivan@161 109 % Setting solver structure fields (toolbox, name, param, solution,
ivan@161 110 % reconstructed and time) to zero values
ivan@161 111
ivan@161 112 SMALL.solver(1)=SMALL_init_solver;
ivan@161 113
ivan@161 114 % Defining the parameters needed for image denoising
ivan@161 115
ivan@161 116 SMALL.solver(1).toolbox='ompbox';
ivan@161 117 SMALL.solver(1).name='omp2';
ivan@161 118 SMALL.solver(1).param=struct(...
ivan@161 119 'epsilon',Edata,...
ivan@161 120 'maxatoms', maxatoms);
ivan@161 121
ivan@161 122 % Denoising the image - find the sparse solution in the learned
ivan@161 123 % dictionary for all patches in the image and the end it uses
ivan@161 124 % reconstruction function to reconstruct the patches and put them into a
ivan@161 125 % denoised image
ivan@161 126
ivan@161 127 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
ivan@161 128
ivan@161 129 % Show PSNR after reconstruction
ivan@161 130
ivan@161 131 SMALL.solver(1).reconstructed.psnr
ivan@161 132
ivan@161 133 %%
ivan@161 134 % For comparison purposes we will denoise image with overcomplete DCT
ivan@161 135 % here
ivan@161 136 % Set SMALL.Problem.A dictionary to be oDCT (i.e. Problem.initdict -
ivan@161 137 % since initial dictionaruy is already set to be oDCT when generating the
ivan@161 138 % denoising problem
ivan@161 139
ivan@161 140
ivan@161 141 % Initialising solver structure
ivan@161 142 % Setting solver structure fields (toolbox, name, param, solution,
ivan@161 143 % reconstructed and time) to zero values
ivan@161 144
ivan@161 145 SMALL.solver(2)=SMALL_init_solver('ALPS','AgebraicPursuit','',1);
ivan@161 146
ivan@161 147 % Defining the parameters needed for image denoising
ivan@161 148
ivan@161 149 SMALL.solver(2).param=struct(...
ivan@161 150 'tolerance',1e-05,...
ivan@161 151 'sparsity', 32,...
ivan@161 152 'mode', 0,...
ivan@161 153 'memory', 1,...
ivan@161 154 'iternum', 50);
ivan@161 155
ivan@161 156 % Initialising Dictionary structure
ivan@161 157 % Setting Dictionary structure fields (toolbox, name, param, D and time)
ivan@161 158 % to zero values
ivan@161 159
ivan@161 160 SMALL.DL(2)=SMALL_init_DL('TwoStepDL', 'Mailhe', '', 1);
ivan@161 161
ivan@161 162
ivan@161 163 % Defining the parameters for MOD
ivan@161 164 % In this example we are learning 256 atoms in 20 iterations, so that
ivan@161 165 % every patch in the training set can be represented with target error in
ivan@161 166 % L2-norm (EData)
ivan@161 167 % Type help ksvd in MATLAB prompt for more options.
ivan@161 168
ivan@161 169
ivan@161 170 SMALL.DL(2).param=struct(...
ivan@161 171 'solver', SMALL.solver(2),...
ivan@161 172 'initdict', SMALL.Problem.initdict,...
ivan@161 173 'dictsize', SMALL.Problem.p,...
ivan@161 174 'iternum', 40,...
ivan@161 175 'show_dict', 1);
ivan@161 176
ivan@161 177 % Learn the dictionary
ivan@161 178
ivan@161 179 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
ivan@161 180
ivan@161 181 % Set SMALL.Problem.A dictionary
ivan@161 182 % (backward compatiblity with SPARCO: solver structure communicate
ivan@161 183 % only with Problem structure, ie no direct communication between DL and
ivan@161 184 % solver structures)
ivan@161 185
ivan@161 186 SMALL.Problem.A = SMALL.DL(2).D;
ivan@161 187 SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
ivan@161 188
ivan@161 189 % Denoising the image - find the sparse solution in the learned
ivan@161 190 % dictionary for all patches in the image and the end it uses
ivan@161 191 % reconstruction function to reconstruct the patches and put them into a
ivan@161 192 % denoised image
ivan@161 193
ivan@161 194 SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
ivan@161 195
ivan@161 196 %%
ivan@161 197 % In the b1 field all patches from the image are stored. For RLS-DLA we
ivan@161 198 % will first exclude all the patches that have l2 norm smaller then
ivan@161 199 % threshold and then take min(40000, number_of_remaining_patches) in
ivan@161 200 % ascending order as our training set (SMALL.Problem.b)
ivan@161 201
ivan@161 202 X=SMALL.Problem.b1;
ivan@161 203 X_norm=sqrt(sum(X.^2, 1));
ivan@161 204 [X_norm_sort, p]=sort(X_norm);
ivan@161 205 p1=p(X_norm_sort>Edata);
ivan@161 206 if size(p1,2)>40000
ivan@161 207 p2 = randperm(size(p1,2));
ivan@161 208 p2=sort(p2(1:40000));
ivan@161 209 size(p2,2)
ivan@161 210 SMALL.Problem.b=X(:,p1(p2));
ivan@161 211 else
ivan@161 212 size(p1,2)
ivan@161 213 SMALL.Problem.b=X(:,p1);
ivan@161 214
ivan@161 215 end
ivan@161 216
ivan@161 217 % Forgetting factor for RLS-DLA algorithm, in this case we are using
ivan@161 218 % fixed value
ivan@161 219
ivan@161 220 lambda=0.9998
ivan@161 221
ivan@161 222 % Use Recursive Least Squares
ivan@161 223 % to Learn overcomplete dictionary
ivan@161 224
ivan@161 225 % Initialising Dictionary structure
ivan@161 226 % Setting Dictionary structure fields (toolbox, name, param, D and time)
ivan@161 227 % to zero values
ivan@161 228
ivan@161 229 SMALL.DL(3)=SMALL_init_DL();
ivan@161 230
ivan@161 231 % Defining fields needed for dictionary learning
ivan@161 232
ivan@161 233 SMALL.DL(3).toolbox = 'SMALL';
ivan@161 234 SMALL.DL(3).name = 'SMALL_rlsdla';
ivan@161 235 SMALL.DL(3).param=struct(...
ivan@161 236 'Edata', Edata,...
ivan@161 237 'initdict', SMALL.Problem.initdict,...
ivan@161 238 'dictsize', SMALL.Problem.p,...
ivan@161 239 'forgettingMode', 'FIX',...
ivan@161 240 'forgettingFactor', lambda,...
ivan@161 241 'show_dict', 1000);
ivan@161 242
ivan@161 243
ivan@161 244 SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3));
ivan@161 245
ivan@161 246 % Initialising solver structure
ivan@161 247 % Setting solver structure fields (toolbox, name, param, solution,
ivan@161 248 % reconstructed and time) to zero values
ivan@161 249
ivan@161 250 SMALL.Problem.A = SMALL.DL(3).D;
ivan@161 251 SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
ivan@161 252
ivan@161 253 SMALL.solver(3)=SMALL_init_solver;
ivan@161 254
ivan@161 255 % Defining the parameters needed for image denoising
ivan@161 256
ivan@161 257 SMALL.solver(3).toolbox='ompbox';
ivan@161 258 SMALL.solver(3).name='omp2';
ivan@161 259 SMALL.solver(3).param=struct(...
ivan@161 260 'epsilon',Edata,...
ivan@161 261 'maxatoms', maxatoms);
ivan@161 262
ivan@161 263
ivan@161 264 SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3));
ivan@161 265
ivan@161 266 SMALL.solver(3).reconstructed.psnr
ivan@161 267
ivan@161 268
ivan@161 269 % show results %
ivan@161 270
ivan@161 271 SMALL_ImgDeNoiseResult(SMALL);
ivan@161 272
ivan@161 273 results(noise_ind,im_num).psnr.ksvd=SMALL.solver(1).reconstructed.psnr;
ivan@161 274 results(noise_ind,im_num).psnr.odct=SMALL.solver(2).reconstructed.psnr;
ivan@161 275 results(noise_ind,im_num).psnr.rlsdla=SMALL.solver(3).reconstructed.psnr;
ivan@161 276 results(noise_ind,im_num).vmrse.ksvd=SMALL.solver(1).reconstructed.vmrse;
ivan@161 277 results(noise_ind,im_num).vmrse.odct=SMALL.solver(2).reconstructed.vmrse;
ivan@161 278 results(noise_ind,im_num).vmrse.rlsdla=SMALL.solver(3).reconstructed.vmrse;
ivan@161 279 results(noise_ind,im_num).ssim.ksvd=SMALL.solver(1).reconstructed.ssim;
ivan@161 280 results(noise_ind,im_num).ssim.odct=SMALL.solver(2).reconstructed.ssim;
ivan@161 281 results(noise_ind,im_num).ssim.rlsdla=SMALL.solver(3).reconstructed.ssim;
ivan@161 282
ivan@161 283 results(noise_ind,im_num).time.ksvd=SMALL.solver(1).time+SMALL.DL(1).time;
ivan@161 284 results(noise_ind,im_num).time.rlsdla.time=SMALL.solver(3).time+SMALL.DL(3).time;
ivan@161 285 clear SMALL;
ivan@161 286 end
ivan@161 287 end
ivan@161 288 % save results.mat results