annotate examples/Automatic Music Transcription/SMALL_AMT_KSVD_Err_test.m @ 9:28f2b5fe3483

(none)
author idamnjanovic
date Mon, 22 Mar 2010 15:04:14 +0000
parents f72603404233
children cbf3521c25eb
rev   line source
idamnjanovic@6 1 %% DICTIONARY LEARNING FOR AUTOMATIC MUSIC TRANSCRIPTION
idamnjanovic@6 2 % This file contains an example of how SMALLbox can be used to test diferent
idamnjanovic@6 3 % dictionary learning techniques in Automatic Music Transcription problem.
idamnjanovic@6 4 % It calls generateAMT_Learning_Problem that will let you to choose midi,
idamnjanovic@6 5 % wave or mat file to be transcribe. If file is midi it will be first
idamnjanovic@6 6 % converted to wave and original midi file will be used for comparison with
idamnjanovic@6 7 % results of dictionary learning and reconstruction.
idamnjanovic@6 8 % The function will generarte the Problem structure that is used to learn
idamnjanovic@6 9 % Problem.p notes spectrograms from training set Problem.b using
idamnjanovic@6 10 % dictionary learning technique defined in DL structure.
idamnjanovic@6 11 %
idamnjanovic@6 12 % Ivan Damnjanovic 2010
idamnjanovic@6 13 %%
idamnjanovic@6 14
idamnjanovic@6 15 clear;
idamnjanovic@6 16
idamnjanovic@6 17
idamnjanovic@6 18 % Defining Automatic Transcription of Piano tune as Dictionary Learning
idamnjanovic@6 19 % Problem
idamnjanovic@6 20
idamnjanovic@6 21 SMALL.Problem = generateAMT_Learning_Problem();
idamnjanovic@6 22 TPmax=0;
idamnjanovic@6 23 for i=1:5
idamnjanovic@6 24 %%
idamnjanovic@6 25 % Use KSVD Dictionary Learning Algorithm to Learn 88 notes (defined in
idamnjanovic@6 26 % SMALL.Problem.p) using sparsity constrain only
idamnjanovic@6 27
idamnjanovic@6 28 % Initialising Dictionary structure
idamnjanovic@6 29 % Setting Dictionary structure fields (toolbox, name, param, D and time)
idamnjanovic@6 30 % to zero values
idamnjanovic@6 31
idamnjanovic@6 32 SMALL.DL(i)=SMALL_init_DL(i);
idamnjanovic@6 33
idamnjanovic@6 34 % Defining the parameters needed for dictionary learning
idamnjanovic@6 35
idamnjanovic@6 36 SMALL.DL(i).toolbox = 'KSVD';
idamnjanovic@6 37 SMALL.DL(i).name = 'ksvd';
idamnjanovic@6 38
idamnjanovic@6 39 % Defining the parameters for KSVD
idamnjanovic@6 40 % In this example we are learning 88 atoms in 100 iterations, so that
idamnjanovic@6 41 % every frame in the training set can be represented with maximum 10
idamnjanovic@6 42 % dictionary elements. However, our aim here is to show how individual
idamnjanovic@6 43 % parameters can be ested in the AMT problem. We test five different
idamnjanovic@6 44 % values for residual error (Edata) in KSVD algorithm.
idamnjanovic@6 45 % Type help ksvd in MATLAB prompt for more options.
idamnjanovic@6 46
idamnjanovic@6 47 Edata(i)=8+i*2;
idamnjanovic@6 48 SMALL.DL(i).param=struct(...
idamnjanovic@6 49 'Edata', Edata(i),...
idamnjanovic@6 50 'dictsize', SMALL.Problem.p,...
idamnjanovic@6 51 'iternum', 100,...
idamnjanovic@6 52 'maxatoms', 10);
idamnjanovic@6 53
idamnjanovic@6 54 % Learn the dictionary
idamnjanovic@6 55
idamnjanovic@6 56 SMALL.DL(i) = SMALL_learn(SMALL.Problem, SMALL.DL(i));
idamnjanovic@6 57
idamnjanovic@6 58 % Set SMALL.Problem.A dictionary and reconstruction function
idamnjanovic@6 59 % (backward compatiblity with SPARCO: solver structure communicate
idamnjanovic@6 60 % only with Problem structure, ie no direct communication between DL and
idamnjanovic@6 61 % solver structures)
idamnjanovic@6 62
idamnjanovic@6 63 SMALL.Problem.A = SMALL.DL(i).D;
idamnjanovic@6 64 SMALL.Problem.reconstruct = @(x) SMALL_midiGenerate(x, SMALL.Problem);
idamnjanovic@6 65
idamnjanovic@6 66 %%
idamnjanovic@6 67 % Initialising solver structure
idamnjanovic@6 68 % Setting solver structure fields (toolbox, name, param, solution,
idamnjanovic@6 69 % reconstructed and time) to zero values
idamnjanovic@6 70 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS
idamnjanovic@6 71 % algorithm is used for representation of training set in the learned
idamnjanovic@6 72 % dictionary.
idamnjanovic@6 73
idamnjanovic@6 74 SMALL.solver(1)=SMALL_init_solver;
idamnjanovic@6 75
idamnjanovic@6 76 % Defining the parameters needed for sparse representation
idamnjanovic@6 77
idamnjanovic@6 78 SMALL.solver(1).toolbox='SPAMS';
idamnjanovic@6 79 SMALL.solver(1).name='mexLasso';
idamnjanovic@6 80 SMALL.solver(1).param=struct('lambda', 2, 'pos', 1, 'mode', 2);
idamnjanovic@6 81
idamnjanovic@6 82 %Represent Training set in the learned dictionary
idamnjanovic@6 83
idamnjanovic@6 84 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
idamnjanovic@6 85
idamnjanovic@6 86 %%
idamnjanovic@6 87 % Analysis of the result of automatic music transcription. If groundtruth
idamnjanovic@6 88 % exists, we can compare transcribed notes and original and get usual
idamnjanovic@6 89 % True Positives, False Positives and False Negatives measures.
idamnjanovic@6 90
idamnjanovic@6 91 AMT_res(i) = AMT_analysis(SMALL.Problem, SMALL.solver(1));
idamnjanovic@6 92
idamnjanovic@6 93 if AMT_res(i).TP>TPmax
idamnjanovic@6 94 TPmax=AMT_res(i).TP;
idamnjanovic@6 95 BLmidi=SMALL.solver(1).reconstructed.midi;
idamnjanovic@6 96 max=i;
idamnjanovic@6 97 end
idamnjanovic@6 98
idamnjanovic@6 99 end %end of for loop
idamnjanovic@6 100
idamnjanovic@6 101 %%
idamnjanovic@6 102 % Plot results and save midi files
idamnjanovic@6 103
idamnjanovic@6 104 figAMTbest=SMALL_AMT_plot(SMALL, AMT_res(max));
idamnjanovic@6 105
idamnjanovic@6 106 resFig=figure('Name', 'Automatic Music Transcription KSVD Error TEST');
idamnjanovic@6 107
idamnjanovic@6 108 subplot (3,1,1); plot(Edata(:), [AMT_res(:).TP], 'ro-');
idamnjanovic@6 109 title('True Positives vs Edata');
idamnjanovic@6 110
idamnjanovic@6 111 subplot (3,1,2); plot(Edata(:), [AMT_res(:).FN], 'ro-');
idamnjanovic@6 112 title('False Negatives vs Edata');
idamnjanovic@6 113
idamnjanovic@6 114 subplot (3,1,3); plot(Edata(:), [AMT_res(:).FP], 'ro-');
idamnjanovic@6 115 title('False Positives vs Edata');
idamnjanovic@6 116
idamnjanovic@6 117 FS=filesep;
idamnjanovic@6 118 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
idamnjanovic@6 119 cd([pathstr1,FS,'results']);
idamnjanovic@6 120 [filename,pathname] = uiputfile({' *.mid;' },'Save midi');
idamnjanovic@6 121 if filename~=0 writemidi(BLmidi, [pathname,FS,filename]);end
idamnjanovic@6 122 [filename,pathname] = uiputfile({' *.fig;' },'Save figure TP/FN/FP vs lambda');
idamnjanovic@6 123 if filename~=0 saveas(resFig, [pathname,FS,filename]);end
idamnjanovic@6 124
idamnjanovic@6 125 [filename,pathname] = uiputfile({' *.fig;' },'Save BEST AMT figure');
idamnjanovic@6 126 if filename~=0 saveas(figAMTbest, [pathname,FS,filename]);end
idamnjanovic@6 127