annotate examples/Automatic Music Transcription/SMALL_AMT_DL_test.m @ 9:28f2b5fe3483

(none)
author idamnjanovic
date Mon, 22 Mar 2010 15:04:14 +0000
parents f72603404233
children cbf3521c25eb
rev   line source
idamnjanovic@6 1 %% DICTIONARY LEARNING FOR AUTOMATIC MUSIC TRANSCRIPTION EXAMPLE 1
idamnjanovic@6 2 % This file contains an example of how SMALLbox can be used to test diferent
idamnjanovic@6 3 % dictionary learning techniques in Automatic Music Transcription problem.
idamnjanovic@6 4 % It calls generateAMT_Learning_Problem that will let you to choose midi,
idamnjanovic@6 5 % wave or mat file to be transcribe. If file is midi it will be first
idamnjanovic@6 6 % converted to wave and original midi file will be used for comparison with
idamnjanovic@6 7 % results of dictionary learning and reconstruction.
idamnjanovic@6 8 % The function will generarte the Problem structure that is used to learn
idamnjanovic@6 9 % Problem.p notes spectrograms from training set Problem.b using
idamnjanovic@6 10 % dictionary learning technique defined in DL structure.
idamnjanovic@6 11 %
idamnjanovic@6 12 % Ivan Damnjanovic 2010
idamnjanovic@6 13 %%
idamnjanovic@6 14
idamnjanovic@6 15 clear;
idamnjanovic@6 16
idamnjanovic@6 17
idamnjanovic@6 18 % Defining Automatic Transcription of Piano tune as Dictionary Learning
idamnjanovic@6 19 % Problem
idamnjanovic@6 20
idamnjanovic@6 21 SMALL.Problem = generateAMT_Learning_Problem();
idamnjanovic@6 22
idamnjanovic@6 23 %%
idamnjanovic@6 24 % Use KSVD Dictionary Learning Algorithm to Learn 88 notes (defined in
idamnjanovic@6 25 % SMALL.Problem.p) using sparsity constrain only
idamnjanovic@6 26
idamnjanovic@6 27 % Initialising Dictionary structure
idamnjanovic@6 28 % Setting Dictionary structure fields (toolbox, name, param, D and time)
idamnjanovic@6 29 % to zero values
idamnjanovic@6 30
idamnjanovic@6 31 SMALL.DL(1)=SMALL_init_DL();
idamnjanovic@6 32
idamnjanovic@6 33 % Defining fields needed for dictionary learning
idamnjanovic@6 34
idamnjanovic@6 35 SMALL.DL(1).toolbox = 'KSVD';
idamnjanovic@6 36 SMALL.DL(1).name = 'ksvd';
idamnjanovic@6 37 % Defining the parameters for KSVD
idamnjanovic@6 38 % In this example we are learning 88 atoms in 100 iterations, so that
idamnjanovic@6 39 % every frame in the training set can be represented with maximum 3
idamnjanovic@6 40 % dictionary elements. Type help ksvd in MATLAB prompt for more options.
idamnjanovic@6 41
idamnjanovic@6 42 SMALL.DL(1).param=struct(...
idamnjanovic@6 43 'Tdata', 3,...
idamnjanovic@6 44 'dictsize', SMALL.Problem.p,...
idamnjanovic@6 45 'iternum', 100);
idamnjanovic@6 46
idamnjanovic@6 47 % Learn the dictionary
idamnjanovic@6 48
idamnjanovic@6 49 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
idamnjanovic@6 50
idamnjanovic@6 51 % Set SMALL.Problem.A dictionary and reconstruction function
idamnjanovic@6 52 % (backward compatiblity with SPARCO: solver structure communicate
idamnjanovic@6 53 % only with Problem structure, ie no direct communication between DL and
idamnjanovic@6 54 % solver structures)
idamnjanovic@6 55
idamnjanovic@6 56 SMALL.Problem.A = SMALL.DL(1).D;
idamnjanovic@6 57 SMALL.Problem.reconstruct = @(x) SMALL_midiGenerate(x, SMALL.Problem);
idamnjanovic@6 58
idamnjanovic@6 59 %%
idamnjanovic@6 60 % Initialising solver structure
idamnjanovic@6 61 % Setting solver structure fields (toolbox, name, param, solution,
idamnjanovic@6 62 % reconstructed and time) to zero values
idamnjanovic@6 63 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS
idamnjanovic@6 64 % algorithm is used for representation of training set in the learned
idamnjanovic@6 65 % dictionary.
idamnjanovic@6 66
idamnjanovic@6 67 SMALL.solver(1)=SMALL_init_solver;
idamnjanovic@6 68
idamnjanovic@6 69 % Defining the parameters needed for sparse representation
idamnjanovic@6 70
idamnjanovic@6 71 SMALL.solver(1).toolbox='SPAMS';
idamnjanovic@6 72 SMALL.solver(1).name='mexLasso';
idamnjanovic@6 73
idamnjanovic@6 74 % Here we use mexLasso mode=2, with lambda=2, lambda2=0 and positivity
idamnjanovic@6 75 % constrain (type 'help mexLasso' for more information about modes):
idamnjanovic@6 76 %
idamnjanovic@6 77 % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2
idamnjanovic@6 78
idamnjanovic@6 79 SMALL.solver(1).param=struct(...
idamnjanovic@6 80 'lambda', 2,...
idamnjanovic@6 81 'pos', 1,...
idamnjanovic@6 82 'mode', 2);
idamnjanovic@6 83
idamnjanovic@6 84 % Call SMALL_soolve to represent the signal in the given dictionary.
idamnjanovic@6 85 % As a final command SMALL_solve will call above defined reconstruction
idamnjanovic@6 86 % function to reconstruct the training set (Problem.b) in the learned
idamnjanovic@6 87 % dictionary (Problem.A)
idamnjanovic@6 88
idamnjanovic@6 89 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
idamnjanovic@6 90
idamnjanovic@6 91 %%
idamnjanovic@6 92 % Analysis of the result of automatic music transcription. If groundtruth
idamnjanovic@6 93 % exists, we can compare transcribed notes and original and get usual
idamnjanovic@6 94 % True Positives, False Positives and False Negatives measures.
idamnjanovic@6 95
idamnjanovic@6 96 if ~isempty(SMALL.Problem.notesOriginal)
idamnjanovic@6 97 AMT_res(1) = AMT_analysis(SMALL.Problem, SMALL.solver(1));
idamnjanovic@6 98 end
idamnjanovic@6 99
idamnjanovic@6 100
idamnjanovic@6 101 %%
idamnjanovic@6 102 % Here we solve the same problem using non-negative sparse coding with
idamnjanovic@6 103 % SPAMS online dictionary learning (Julien Mairal 2009)
idamnjanovic@6 104 %
idamnjanovic@6 105
idamnjanovic@6 106 % Initialising Dictionary structure
idamnjanovic@6 107 % Setting Dictionary structure fields (toolbox, name, param, D and time)
idamnjanovic@6 108 % to zero values
idamnjanovic@6 109
idamnjanovic@6 110 SMALL.DL(2)=SMALL_init_DL();
idamnjanovic@6 111
idamnjanovic@6 112
idamnjanovic@6 113 % Defining fields needed for dictionary learning
idamnjanovic@6 114
idamnjanovic@6 115 SMALL.DL(2).toolbox = 'SPAMS';
idamnjanovic@6 116 SMALL.DL(2).name = 'mexTrainDL';
idamnjanovic@6 117
idamnjanovic@6 118 % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters.
idamnjanovic@6 119
idamnjanovic@6 120 SMALL.DL(2).param=struct(...
idamnjanovic@6 121 'K', SMALL.Problem.p,...
idamnjanovic@6 122 'lambda', 3,...
idamnjanovic@6 123 'iter', 300,...
idamnjanovic@6 124 'posAlpha', 1,...
idamnjanovic@6 125 'posD', 1,...
idamnjanovic@6 126 'whiten', 0,...
idamnjanovic@6 127 'mode', 2);
idamnjanovic@6 128
idamnjanovic@6 129 % Learn the dictionary
idamnjanovic@6 130
idamnjanovic@6 131 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
idamnjanovic@6 132
idamnjanovic@6 133 % Set SMALL.Problem.A dictionary and reconstruction function
idamnjanovic@6 134 % (backward compatiblity with SPARCO: solver structure communicate
idamnjanovic@6 135 % only with Problem structure, ie no direct communication between DL and
idamnjanovic@6 136 % solver structures)
idamnjanovic@6 137
idamnjanovic@6 138 SMALL.Problem.A = SMALL.DL(2).D;
idamnjanovic@6 139 SMALL.Problem.reconstruct=@(x) SMALL_midiGenerate(x, SMALL.Problem);
idamnjanovic@6 140
idamnjanovic@6 141 %%
idamnjanovic@6 142 % Initialising solver structure
idamnjanovic@6 143 % Setting solver structure fields (toolbox, name, param, solution,
idamnjanovic@6 144 % reconstructed and time) to zero values
idamnjanovic@6 145 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS
idamnjanovic@6 146 % algorithm is used for representation of training set in the learned
idamnjanovic@6 147 % dictionary.
idamnjanovic@6 148
idamnjanovic@6 149 SMALL.solver(2)=SMALL_init_solver;
idamnjanovic@6 150
idamnjanovic@6 151 % Defining the parameters needed for sparse representation
idamnjanovic@6 152
idamnjanovic@6 153 SMALL.solver(2).toolbox='SPAMS';
idamnjanovic@6 154 SMALL.solver(2).name='mexLasso';
idamnjanovic@6 155
idamnjanovic@6 156 % Here we use mexLasso mode=2, with lambda=3, lambda2=0 and positivity
idamnjanovic@6 157 % constrain (type 'help mexLasso' for more information about modes):
idamnjanovic@6 158 %
idamnjanovic@6 159 % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2
idamnjanovic@6 160
idamnjanovic@6 161 SMALL.solver(2).param=struct('lambda', 3, 'pos', 1, 'mode', 2);
idamnjanovic@6 162
idamnjanovic@6 163 % Call SMALL_soolve to represent the signal in the given dictionary.
idamnjanovic@6 164 % As a final command SMALL_solve will call above defined reconstruction
idamnjanovic@6 165 % function to reconstruct the training set (Problem.b) in the learned
idamnjanovic@6 166 % dictionary (Problem.A)
idamnjanovic@6 167
idamnjanovic@6 168 SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
idamnjanovic@6 169
idamnjanovic@6 170 %%
idamnjanovic@6 171 % Analysis of the result of automatic music transcription. If groundtruth
idamnjanovic@6 172 % exists, we can compare transcribed notes and original and get usual
idamnjanovic@6 173 % True Positives, False Positives and False Negatives measures.
idamnjanovic@6 174
idamnjanovic@6 175 if ~isempty(SMALL.Problem.notesOriginal)
idamnjanovic@6 176 AMT_res(2) = AMT_analysis(SMALL.Problem, SMALL.solver(2));
idamnjanovic@6 177 end
idamnjanovic@6 178
idamnjanovic@6 179 %%
idamnjanovic@6 180 % Plot results and save midi files
idamnjanovic@6 181
idamnjanovic@6 182 if ~isempty(SMALL.Problem.notesOriginal)
idamnjanovic@6 183 figAMT = SMALL_AMT_plot(SMALL, AMT_res);
idamnjanovic@6 184 else
idamnjanovic@6 185 figAMT = figure('Name', 'Automatic Music Transcription KSVD vs SPAMS');
idamnjanovic@6 186 subplot(2,1,1); plot(SMALL.solver(1).reconstructed.notes(:,5), SMALL.solver(1).reconstructed.notes(:,3), 'kd ');
idamnjanovic@6 187 title (sprintf('%s dictionary in %.2f s', SMALL.DL(1).name, SMALL.DL(1).time));
idamnjanovic@6 188 xlabel('Time');
idamnjanovic@6 189 ylabel('Note Number');
idamnjanovic@6 190 subplot(2,1,2); plot(SMALL.solver(2).reconstructed.notes(:,5), SMALL.solver(2).reconstructed.notes(:,3), 'b* ');
idamnjanovic@6 191 title (sprintf('%s dictionary in %.2f s', SMALL.DL(2).name, SMALL.DL(2).time));
idamnjanovic@6 192 xlabel('Time');
idamnjanovic@6 193 ylabel('Note Number');
idamnjanovic@6 194 end
idamnjanovic@6 195
idamnjanovic@6 196 FS=filesep;
idamnjanovic@6 197
idamnjanovic@6 198 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
idamnjanovic@6 199 cd([pathstr1,FS,'results']);
idamnjanovic@6 200
idamnjanovic@6 201 [filename,pathname] = uiputfile({' *.mid;' },'Save KSVD result midi');
idamnjanovic@6 202 if filename~=0 writemidi(SMALL.solver(1).reconstructed.midi, [pathname,FS,filename]);end
idamnjanovic@6 203
idamnjanovic@6 204 [filename,pathname] = uiputfile({' *.mid;' },'Save SPAMS result midi');
idamnjanovic@6 205 if filename~=0 writemidi(SMALL.solver(2).reconstructed.midi, [pathname,FS,filename]);end
idamnjanovic@6 206
idamnjanovic@6 207 [filename,pathname] = uiputfile({' *.fig;' },'Save KSVD vs SPAMS AMT figure');
idamnjanovic@6 208 if filename~=0 saveas(figAMT, [pathname,FS,filename]);end
idamnjanovic@6 209
idamnjanovic@6 210
idamnjanovic@6 211