idamnjanovic@8
|
1 function solver = SMALL_solve(Problem, solver)
|
ivan@128
|
2 %% SMALL sparse solver
|
idamnjanovic@24
|
3 %
|
ivan@85
|
4 % Function gets as input SMALL structure that contains SPARCO problem to
|
ivan@85
|
5 % be solved, name of the toolbox and solver, and parameters file for
|
ivan@85
|
6 % particular solver.
|
ivan@85
|
7 %
|
ivan@85
|
8 % Outputs are solution, reconstructed signal and time spent
|
ivan@85
|
9
|
idamnjanovic@24
|
10 % Centre for Digital Music, Queen Mary, University of London.
|
idamnjanovic@24
|
11 % This file copyright 2009 Ivan Damnjanovic.
|
idamnjanovic@24
|
12 %
|
idamnjanovic@24
|
13 % This program is free software; you can redistribute it and/or
|
idamnjanovic@24
|
14 % modify it under the terms of the GNU General Public License as
|
idamnjanovic@24
|
15 % published by the Free Software Foundation; either version 2 of the
|
idamnjanovic@24
|
16 % License, or (at your option) any later version. See the file
|
idamnjanovic@24
|
17 % COPYING included with this distribution for more information.
|
idamnjanovic@24
|
18 %
|
idamnjanovic@8
|
19 %%
|
idamnjanovic@8
|
20
|
idamnjanovic@8
|
21 if isa(Problem.A,'float')
|
idamnjanovic@8
|
22 A = Problem.A;
|
idamnjanovic@8
|
23 SparseLab_A=Problem.A;
|
idamnjanovic@8
|
24 m = size(Problem.A,1); % m is the no. of rows.
|
idamnjanovic@8
|
25 n = size(Problem.A,2); % n is the no. of columns.
|
idamnjanovic@8
|
26 else
|
idamnjanovic@8
|
27 A = @(x) Problem.A(x,1); % The operator
|
idamnjanovic@8
|
28 AT = @(y) Problem.A(y,2); % and its transpose.
|
idamnjanovic@8
|
29 SparseLab_A =@(mode, m, n, x, I, dim) SL_A(Problem.A, mode, m, n, x, I, dim);
|
idamnjanovic@8
|
30 m = Problem.sizeA(1); % m is the no. of rows.
|
idamnjanovic@8
|
31 n = Problem.sizeA(2); % n is the no. of columns.
|
idamnjanovic@8
|
32
|
idamnjanovic@1
|
33 end
|
idamnjanovic@37
|
34 % if signal that needs to be represented is different then training set for
|
idamnjanovic@37
|
35 % dictionary learning it should be stored in Problem.b1 matix
|
idamnjanovic@37
|
36 if isfield(Problem, 'b1')
|
idamnjanovic@37
|
37 b = Problem.b1;
|
idamnjanovic@37
|
38 else
|
idamnjanovic@37
|
39 b = Problem.b; % The right-hand-side vector.
|
idamnjanovic@37
|
40 end
|
idamnjanovic@8
|
41 %%
|
ivan@140
|
42 if (solver.profile)
|
ivan@140
|
43 fprintf('\nStarting solver %s... \n', solver.name);
|
ivan@140
|
44 end
|
ivan@140
|
45
|
idamnjanovic@8
|
46 start=cputime;
|
idamnjanovic@37
|
47 tStart=tic;
|
idamnjanovic@8
|
48 if strcmpi(solver.toolbox,'sparselab')
|
idamnjanovic@8
|
49 y = eval([solver.name,'(SparseLab_A, b, n,',solver.param,');']);
|
idamnjanovic@8
|
50 elseif strcmpi(solver.toolbox,'sparsify')
|
ivan@154
|
51 if isa(Problem.A,'float')
|
ivan@154
|
52 y = eval([solver.name,'(b, A, n,',solver.param,');']);
|
ivan@154
|
53 else
|
ivan@154
|
54 y = eval([solver.name,'(b, A, n, ''P_trans'', AT,',solver.param,');']);
|
ivan@154
|
55 end
|
idamnjanovic@8
|
56 elseif (strcmpi(solver.toolbox,'spgl1')||strcmpi(solver.toolbox,'gpsr'))
|
idamnjanovic@8
|
57 y = eval([solver.name,'(b, A,',solver.param,');']);
|
idamnjanovic@8
|
58 elseif (strcmpi(solver.toolbox,'SPAMS'))
|
idamnjanovic@8
|
59 y = eval([solver.name,'(b, A, solver.param);']);
|
idamnjanovic@8
|
60 elseif (strcmpi(solver.toolbox,'SMALL'))
|
idamnjanovic@8
|
61 if isa(Problem.A,'float')
|
idamnjanovic@8
|
62 y = eval([solver.name,'(A, b, n,',solver.param,');']);
|
idamnjanovic@8
|
63 else
|
idamnjanovic@8
|
64 y = eval([solver.name,'(A, b, n,',solver.param,',AT);']);
|
idamnjanovic@8
|
65 end
|
idamnjanovic@37
|
66 elseif (strcmpi(solver.toolbox, 'ompbox'))
|
idamnjanovic@37
|
67 G=A'*A;
|
idamnjanovic@37
|
68 epsilon=solver.param.epsilon;
|
idamnjanovic@37
|
69 maxatoms=solver.param.maxatoms;
|
idamnjanovic@37
|
70 y = eval([solver.name,'(A, b, G,epsilon,''maxatoms'',maxatoms,''checkdict'',''off'');']);
|
idamnjanovic@37
|
71 elseif (strcmpi(solver.toolbox, 'ompsbox'))
|
idamnjanovic@37
|
72 basedict = Problem.basedict;
|
ivan@154
|
73 if issparse(Problem.A)
|
idamnjanovic@37
|
74 A = Problem.A;
|
ivan@154
|
75 else
|
idamnjanovic@37
|
76 A = sparse(Problem.A);
|
ivan@154
|
77 end
|
idamnjanovic@37
|
78 G = dicttsep(basedict,A,dictsep(basedict,A,speye(size(A,2))));
|
idamnjanovic@37
|
79 epsilon=solver.param.epsilon;
|
idamnjanovic@37
|
80 maxatoms=solver.param.maxatoms;
|
idamnjanovic@37
|
81 y = eval([solver.name,'(basedict, A, b, G,epsilon,''maxatoms'',maxatoms,''checkdict'',''off'');']);
|
idamnjanovic@37
|
82 Problem.sparse=1;
|
ivan@154
|
83 elseif (strcmpi(solver.toolbox, 'ALPS'))
|
ivan@154
|
84 if ~isa(Problem.A,'float')
|
ivan@154
|
85 % ALPS does not accept implicit dictionary definition
|
ivan@154
|
86 A = opToMatrix(Problem.A, 1);
|
ivan@154
|
87 end
|
ivan@154
|
88 [y, numiter, time, y_path] = wrapper_ALPS_toolbox(b, A, solver.param);
|
ivan@155
|
89 elseif (strcmpi(solver.toolbox, 'MMbox'))
|
ivan@155
|
90 if ~isa(Problem.A,'float')
|
ivan@155
|
91 % ALPS does not accept implicit dictionary definition
|
ivan@155
|
92 A = opToMatrix(Problem.A, 1);
|
ivan@155
|
93 end
|
ivan@154
|
94
|
ivan@155
|
95 [y, cost] = wrapper_mm_solver(b, A, solver.param);
|
ivan@155
|
96
|
ivan@155
|
97
|
ivan@154
|
98
|
ivan@154
|
99 % To introduce new sparse representation algorithm put the files in
|
ivan@154
|
100 % your Matlab path. Next, unique name <TolboxID> for your toolbox and
|
ivan@154
|
101 % prefferd API <Preffered_API> needs to be defined.
|
ivan@154
|
102 %
|
ivan@154
|
103 % elseif strcmpi(solver.toolbox,'<ToolboxID>')
|
ivan@154
|
104 %
|
ivan@154
|
105 % % - Evaluate the function (solver.name - defined in the main) with
|
ivan@154
|
106 % % parameters given above
|
ivan@154
|
107 %
|
ivan@154
|
108 % y = eval([solver.name,'(<Preffered_API>);']);
|
ivan@154
|
109
|
idamnjanovic@8
|
110 else
|
idamnjanovic@8
|
111 printf('\nToolbox has not been registered. Please change SMALL_solver file.\n');
|
idamnjanovic@8
|
112 return
|
idamnjanovic@8
|
113 end
|
idamnjanovic@8
|
114
|
idamnjanovic@8
|
115 %%
|
idamnjanovic@8
|
116 % Sparse representation time
|
idamnjanovic@37
|
117 tElapsed=toc(tStart);
|
idamnjanovic@8
|
118 solver.time = cputime - start;
|
ivan@140
|
119 if (solver.profile)
|
ivan@140
|
120 fprintf('Solver %s finished task in %2f seconds (cpu time). \n', solver.name, solver.time);
|
ivan@140
|
121 fprintf('Solver %s finished task in %2f seconds (tic-toc time). \n', solver.name, tElapsed);
|
ivan@140
|
122 end
|
idamnjanovic@37
|
123 solver.time=tElapsed;
|
idamnjanovic@8
|
124 % geting around out of memory problem when converting big matrix from
|
idamnjanovic@8
|
125 % sparse to full...
|
idamnjanovic@8
|
126
|
idamnjanovic@18
|
127 if isfield(Problem, 'sparse')&&(Problem.sparse==1)
|
idamnjanovic@8
|
128 solver.solution = y;
|
idamnjanovic@8
|
129 else
|
idamnjanovic@8
|
130 solver.solution = full(y);
|
idamnjanovic@8
|
131 end
|
idamnjanovic@37
|
132 if isfield(Problem,'reconstruct')
|
ivan@140
|
133 % Reconstruct the signal from the solution
|
ivan@140
|
134 solver.reconstructed = Problem.reconstruct(solver.solution);
|
idamnjanovic@8
|
135 end
|
idamnjanovic@37
|
136 end
|