annotate examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsSPAMS.m @ 125:002ec1b2ceff sup_158_IMG_Processing_toolbox_

cleaning up. All IMP toolbox dependencies removed
author Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk>
date Wed, 25 May 2011 15:29:20 +0100
parents dab78a3598b6
children 8e660fd14774
rev   line source
idamnjanovic@6 1 %% DICTIONARY LEARNING FOR IMAGE DENOISING
ivan@107 2
idamnjanovic@25 3 %
idamnjanovic@6 4 % This file contains an example of how SMALLbox can be used to test different
idamnjanovic@6 5 % dictionary learning techniques in Image Denoising problem.
idamnjanovic@6 6 % It calls generateImageDenoiseProblem that will let you to choose image,
idamnjanovic@6 7 % add noise and use noisy image to generate training set for dictionary
idamnjanovic@6 8 % learning.
idamnjanovic@6 9 % Three dictionary learning techniques were compared:
idamnjanovic@6 10 % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient
idamnjanovic@6 11 % Implementation of the K-SVD Algorithm using Batch Orthogonal
idamnjanovic@6 12 % Matching Pursuit", Technical Report - CS, Technion, April 2008.
idamnjanovic@6 13 % - KSVDS - R. Rubinstein, M. Zibulevsky, and M. Elad, "Learning Sparse
idamnjanovic@6 14 % Dictionaries for Sparse Signal Approximation", Technical
idamnjanovic@6 15 % Report - CS, Technion, June 2009.
idamnjanovic@6 16 % - SPAMS - J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online
idamnjanovic@6 17 % Dictionary Learning for Sparse Coding. International
idamnjanovic@6 18 % Conference on Machine Learning,Montreal, Canada, 2009
idamnjanovic@6 19 %
ivan@107 20
ivan@107 21 %
ivan@107 22 % Centre for Digital Music, Queen Mary, University of London.
ivan@107 23 % This file copyright 2009 Ivan Damnjanovic.
ivan@107 24 %
ivan@107 25 % This program is free software; you can redistribute it and/or
ivan@107 26 % modify it under the terms of the GNU General Public License as
ivan@107 27 % published by the Free Software Foundation; either version 2 of the
ivan@107 28 % License, or (at your option) any later version. See the file
ivan@107 29 % COPYING included with this distribution for more information.
idamnjanovic@6 30 %
idamnjanovic@6 31 %%
idamnjanovic@6 32
idamnjanovic@6 33 clear;
idamnjanovic@6 34
idamnjanovic@6 35 % If you want to load the image outside of generateImageDenoiseProblem
idamnjanovic@6 36 % function uncomment following lines. This can be useful if you want to
idamnjanovic@6 37 % denoise more then one image for example.
idamnjanovic@6 38
idamnjanovic@6 39 % TMPpath=pwd;
idamnjanovic@6 40 % FS=filesep;
idamnjanovic@6 41 % [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
idamnjanovic@6 42 % cd([pathstr1,FS,'data',FS,'images']);
idamnjanovic@6 43 % [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes');
idamnjanovic@6 44 % [pathstr, name, ext, versn] = fileparts(filename);
idamnjanovic@6 45 % test_image = imread(filename);
idamnjanovic@6 46 % test_image = double(test_image);
idamnjanovic@6 47 % cd(TMPpath);
idamnjanovic@6 48 % SMALL.Problem.name=name;
idamnjanovic@6 49
idamnjanovic@6 50
idamnjanovic@6 51 % Defining Image Denoising Problem as Dictionary Learning
idamnjanovic@6 52 % Problem. As an input we set the number of training patches.
idamnjanovic@6 53
idamnjanovic@6 54 SMALL.Problem = generateImageDenoiseProblem('', 40000);
idamnjanovic@6 55
idamnjanovic@6 56
idamnjanovic@6 57 %%
idamnjanovic@6 58 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary
idamnjanovic@6 59
idamnjanovic@6 60 % Initialising Dictionary structure
idamnjanovic@6 61 % Setting Dictionary structure fields (toolbox, name, param, D and time)
idamnjanovic@6 62 % to zero values
idamnjanovic@6 63
idamnjanovic@6 64 SMALL.DL(1)=SMALL_init_DL();
idamnjanovic@6 65
idamnjanovic@6 66 % Defining the parameters needed for dictionary learning
idamnjanovic@6 67
idamnjanovic@6 68 SMALL.DL(1).toolbox = 'KSVD';
idamnjanovic@6 69 SMALL.DL(1).name = 'ksvd';
idamnjanovic@6 70
idamnjanovic@6 71 % Defining the parameters for KSVD
idamnjanovic@6 72 % In this example we are learning 256 atoms in 20 iterations, so that
idamnjanovic@6 73 % every patch in the training set can be represented with target error in
idamnjanovic@6 74 % L2-norm (EData)
idamnjanovic@6 75 % Type help ksvd in MATLAB prompt for more options.
idamnjanovic@6 76
idamnjanovic@6 77 Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
ivan@107 78 maxatoms = floor(prod(SMALL.Problem.blocksize)/2);
ivan@107 79
idamnjanovic@6 80 SMALL.DL(1).param=struct(...
idamnjanovic@6 81 'Edata', Edata,...
idamnjanovic@6 82 'initdict', SMALL.Problem.initdict,...
idamnjanovic@6 83 'dictsize', SMALL.Problem.p,...
idamnjanovic@6 84 'iternum', 20,...
idamnjanovic@6 85 'memusage', 'high');
idamnjanovic@6 86
idamnjanovic@6 87 % Learn the dictionary
idamnjanovic@6 88
idamnjanovic@6 89 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
idamnjanovic@6 90
idamnjanovic@6 91 % Set SMALL.Problem.A dictionary
idamnjanovic@6 92 % (backward compatiblity with SPARCO: solver structure communicate
idamnjanovic@6 93 % only with Problem structure, ie no direct communication between DL and
idamnjanovic@6 94 % solver structures)
idamnjanovic@6 95
idamnjanovic@6 96 SMALL.Problem.A = SMALL.DL(1).D;
ivan@107 97 SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem);
idamnjanovic@6 98
idamnjanovic@6 99 %%
idamnjanovic@6 100 % Initialising solver structure
idamnjanovic@6 101 % Setting solver structure fields (toolbox, name, param, solution,
idamnjanovic@6 102 % reconstructed and time) to zero values
idamnjanovic@6 103
idamnjanovic@6 104 SMALL.solver(1)=SMALL_init_solver;
idamnjanovic@6 105
idamnjanovic@6 106 % Defining the parameters needed for image denoising
idamnjanovic@6 107
idamnjanovic@6 108 SMALL.solver(1).toolbox='ompbox';
ivan@107 109 SMALL.solver(1).name='omp2';
ivan@107 110 SMALL.solver(1).param=struct(...
ivan@107 111 'epsilon',Edata,...
ivan@107 112 'maxatoms', maxatoms);
idamnjanovic@6 113
ivan@107 114 % Denoising the image - find the sparse solution in the learned
ivan@107 115 % dictionary for all patches in the image and the end it uses
ivan@107 116 % reconstruction function to reconstruct the patches and put them into a
ivan@107 117 % denoised image
idamnjanovic@6 118
ivan@107 119 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
ivan@107 120
ivan@107 121 % Show PSNR after reconstruction
ivan@107 122
ivan@107 123 SMALL.solver(1).reconstructed.psnr
idamnjanovic@6 124
idamnjanovic@6 125 %%
idamnjanovic@6 126 % Use KSVDS Dictionary Learning Algorithm to denoise image
idamnjanovic@6 127
idamnjanovic@6 128 % Initialising solver structure
idamnjanovic@6 129 % Setting solver structure fields (toolbox, name, param, solution,
idamnjanovic@6 130 % reconstructed and time) to zero values
idamnjanovic@6 131
idamnjanovic@6 132 SMALL.DL(2)=SMALL_init_DL();
idamnjanovic@6 133
idamnjanovic@6 134 % Defining the parameters needed for dictionary learning
idamnjanovic@6 135
idamnjanovic@6 136 SMALL.DL(2).toolbox = 'KSVDS';
idamnjanovic@6 137 SMALL.DL(2).name = 'ksvds';
idamnjanovic@6 138
idamnjanovic@6 139 % Defining the parameters for KSVDS
idamnjanovic@6 140 % In this example we are learning 256 atoms in 20 iterations, so that
idamnjanovic@6 141 % every patch in the training set can be represented with target error in
idamnjanovic@6 142 % L2-norm (EDataS). We also impose "double sparsity" - dictionary itself
idamnjanovic@6 143 % has to be sparse in the given base dictionary (Tdict - number of
idamnjanovic@6 144 % nonzero elements per atom).
idamnjanovic@6 145 % Type help ksvds in MATLAB prompt for more options.
idamnjanovic@6 146
idamnjanovic@6 147 EdataS=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
idamnjanovic@6 148 SMALL.DL(2).param=struct(...
idamnjanovic@6 149 'Edata', EdataS, ...
idamnjanovic@6 150 'Tdict', 6,...
idamnjanovic@6 151 'stepsize', 1,...
idamnjanovic@6 152 'dictsize', SMALL.Problem.p,...
idamnjanovic@6 153 'iternum', 20,...
idamnjanovic@6 154 'memusage', 'high');
idamnjanovic@6 155 SMALL.DL(2).param.initA = speye(SMALL.Problem.p);
idamnjanovic@6 156 SMALL.DL(2).param.basedict{1} = odctdict(8,16);
idamnjanovic@6 157 SMALL.DL(2).param.basedict{2} = odctdict(8,16);
idamnjanovic@6 158
idamnjanovic@6 159 % Learn the dictionary
idamnjanovic@6 160
idamnjanovic@6 161 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
idamnjanovic@6 162
idamnjanovic@6 163 % Set SMALL.Problem.A dictionary and SMALL.Problem.basedictionary
idamnjanovic@6 164 % (backward compatiblity with SPARCO: solver structure communicate
idamnjanovic@6 165 % only with Problem structure, ie no direct communication between DL and
idamnjanovic@6 166 % solver structures)
idamnjanovic@6 167
idamnjanovic@6 168 SMALL.Problem.A = SMALL.DL(2).D;
idamnjanovic@6 169 SMALL.Problem.basedict{1} = SMALL.DL(2).param.basedict{1};
idamnjanovic@6 170 SMALL.Problem.basedict{2} = SMALL.DL(2).param.basedict{2};
idamnjanovic@6 171
ivan@107 172 % Setting up reconstruction function
ivan@107 173
ivan@107 174 SparseDict=1;
ivan@107 175 SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem, SparseDict);
ivan@107 176
idamnjanovic@6 177 % Initialising solver structure
idamnjanovic@6 178 % Setting solver structure fields (toolbox, name, param, solution,
idamnjanovic@6 179 % reconstructed and time) to zero values
idamnjanovic@6 180
idamnjanovic@6 181 SMALL.solver(2)=SMALL_init_solver;
idamnjanovic@6 182
idamnjanovic@6 183 % Defining the parameters needed for image denoising
idamnjanovic@6 184
idamnjanovic@6 185 SMALL.solver(2).toolbox='ompsbox';
ivan@107 186 SMALL.solver(2).name='omps2';
ivan@107 187 SMALL.solver(2).param=struct(...
ivan@107 188 'epsilon',Edata,...
ivan@107 189 'maxatoms', maxatoms);
idamnjanovic@6 190
ivan@107 191 % Denoising the image - find the sparse solution in the learned
ivan@107 192 % dictionary for all patches in the image and the end it uses
ivan@107 193 % reconstruction function to reconstruct the patches and put them into a
ivan@107 194 % denoised image
idamnjanovic@6 195
ivan@107 196 SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
idamnjanovic@6 197
ivan@107 198 %%
ivan@107 199 % Use SPAMS Online Dictionary Learning Algorithm
ivan@107 200 % to Learn overcomplete dictionary (Julien Mairal 2009)
ivan@107 201 % (If you have not installed SPAMS please comment the following two cells)
ivan@107 202
ivan@107 203 % Initialising Dictionary structure
ivan@107 204 % Setting Dictionary structure fields (toolbox, name, param, D and time)
ivan@107 205 % to zero values
ivan@107 206
ivan@107 207 SMALL.DL(3)=SMALL_init_DL();
ivan@107 208
ivan@107 209 % Defining fields needed for dictionary learning
ivan@107 210
ivan@107 211 SMALL.DL(3).toolbox = 'SPAMS';
ivan@107 212 SMALL.DL(3).name = 'mexTrainDL';
ivan@107 213
ivan@107 214 % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters.
ivan@107 215
ivan@107 216 SMALL.DL(3).param=struct(...
ivan@107 217 'D', SMALL.Problem.initdict,...
ivan@107 218 'K', SMALL.Problem.p,...
ivan@107 219 'lambda', 2,...
ivan@107 220 'iter', 200,...
ivan@107 221 'mode', 3, ...
ivan@107 222 'modeD', 0);
ivan@107 223
ivan@107 224 % Learn the dictionary
ivan@107 225
ivan@107 226 SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3));
ivan@107 227
ivan@107 228 % Set SMALL.Problem.A dictionary
ivan@107 229 % (backward compatiblity with SPARCO: solver structure communicate
ivan@107 230 % only with Problem structure, ie no direct communication between DL and
ivan@107 231 % solver structures)
ivan@107 232
ivan@107 233 SMALL.Problem.A = SMALL.DL(3).D;
ivan@107 234
ivan@107 235 % Setting up reconstruction function
ivan@107 236
ivan@107 237 SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem);
ivan@107 238
ivan@107 239 % Initialising solver structure
ivan@107 240 % Setting solver structure fields (toolbox, name, param, solution,
ivan@107 241 % reconstructed and time) to zero values
ivan@107 242
ivan@107 243 SMALL.solver(3)=SMALL_init_solver;
ivan@107 244
ivan@107 245 % Defining the parameters needed for image denoising
ivan@107 246
ivan@107 247 SMALL.solver(3).toolbox='ompbox';
ivan@107 248 SMALL.solver(3).name='omp2';
ivan@107 249 SMALL.solver(3).param=struct(...
ivan@107 250 'epsilon',Edata,...
ivan@107 251 'maxatoms', maxatoms);
ivan@107 252
ivan@107 253 % Denoising the image - find the sparse solution in the learned
ivan@107 254 % dictionary for all patches in the image and the end it uses
ivan@107 255 % reconstruction function to reconstruct the patches and put them into a
ivan@107 256 % denoised image
ivan@107 257
ivan@107 258 SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3));
idamnjanovic@6 259
idamnjanovic@6 260 %%
idamnjanovic@6 261 % Plot results and save midi files
idamnjanovic@6 262
idamnjanovic@6 263 % show results %
idamnjanovic@6 264
idamnjanovic@6 265 SMALL_ImgDeNoiseResult(SMALL);