view simscene.py @ 5:42f189846ba8

More options parsing, can read scores in csv,json,xls as well as annotation data
author Emmanouil Thoefanis Chourdakis <e.t.chourdakis@qmul.ac.uk>
date Mon, 02 Oct 2017 15:54:26 +0100
parents 94eb0280ad4a
children f5edaa5ca167
line wrap: on
line source
#!/bin/python
# -*- coding: utf-8 -*-
# For licensing please see: LICENSE
# Copyright (c) Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk>

import argparse
import logging
import pandas as pd
import sys

from tabulate import tabulate

def read_events_file(fname):
    if fname[-3:].lower() == 'xls':
        df = pd.read_excel(fname)
    elif fname[-4:].lower() == 'json':
        df = pd.read_json(fname)    
    elif fname[-3:].lower() in ['txt', 'csv']:           
        with open(fname) as f:
            header = f.readline()
        
            s = f.readline()
            f.seek(0,0)
            if ',' in s:
                sep = ','
            elif '\t' in s:
                sep = '\t'
            else:
                sep = ' '
            if sep in header:
                logging.warning('Probably no header or malformed .csv. Will try to parse it raw.')
                df = pd.read_csv(f, header=None, sep=sep)                  
            else:
                df = pd.read_csv(f, sep=sep)
                df = None
            df.columns = ['label','sampleid','ebr','ebr_stddev','mean_time_between_instances','time_between_instances_stddev','start_time','end_time','fade_in_time','fade_out_time']

    logging.info('Using input:\n'+tabulate(df, headers='keys', tablefmt='psql'))                   
    return df

def read_backgrounds_file(fname):
    if fname[-3:].lower() == 'xls':
        df = pd.read_excel(fname)
    elif fname[-4:].lower() == 'json':
        df = pd.read_json(fname)    
    elif fname[-3:].lower() in ['txt', 'csv']:           
        with open(fname) as f:
            header = f.readline()
        
            s = f.readline()
            f.seek(0,0)
            if ',' in s:
                sep = ','
            elif '\t' in s:
                sep = '\t'
            else:
                sep = ' '
            if sep in header:
                logging.warning('Probably no header or malformed .csv. Will try to parse it raw.')
                df = pd.read_csv(f, header=None, sep=sep)                  
            else:
                df = pd.read_csv(f, sep=sep)
                df = None
            df.columns = ['label','sampleid','snr']


    logging.info('Using input:\n'+tabulate(df, headers='keys', tablefmt='psql'))                   
    return df

def read_annotations_file(fname):
    if fname[-3:].lower() == 'xls':
        df = pd.read_excel(fname)
    elif fname[-4:].lower() == 'json':
        df = pd.read_json(fname)
    elif fname[-3:].lower() in ['txt', 'csv']:
                                
        with open(fname) as f:
            header = f.readline()
        
            s = f.readline()
            f.seek(0,0)
            if ',' in s:
                sep = ','
            elif '\t' in s:
                sep = '\t'
            else:
                sep = ' '
            if sep in header:
                logging.warning('Probably no header or malformed .csv. Will try to parse it raw.')
                df = pd.read_csv(f, header=None, sep=sep)
                df.columns = ['start', 'stop', 'class']                        
            else:
                df.columns = ['start', 'stop', 'class']
                df = pd.read_csv(f, sep=sep)
                df = None

    logging.info('Using input:\n'+tabulate(df, headers='keys', tablefmt='psql'))                   
    return df

def run_demo():
    print("TODO: Implement run_demo()")
    
def simscene(input_path,
             output_path,
             scene_duration,
             score_events,
             score_backgrounds,
             **kwargs):
    logging.info('simscene() is not yet implemented')

    
    
             
def not_implemented():
    print("TODO: not implemented")
    
if __name__=="__main__":
    """
    Main function, parses options and calls the simscene generation function
    or a demo. The options given are almost identical to Lagrange et al's 
    simscene.
    """
    argparser = argparse.ArgumentParser(
            description="SimScene.py acoustic scene generator",
    )
    argparser.add_argument(
        'input_path',
        type=str,
        help="Path of a directory containing wave files for sound backgrounds (in the `background' sub-directory) or events (in `event')"
    )
    argparser.add_argument(
        'output_path',
        type=str,
        help="The directory the generated scenes and annotations will reside."
    )    
    argparser.add_argument(
        'scene_duration',
        type=float,
        help="Duration of scene in seconds",
    )
    scene_duration = None
    
    argparser.add_argument(
        '-e', '--score-events',
        type=str,
        help="Score events file as a comma-separated text file (.csv, .txt), JSON (.json), or Excel (.xls) file"
    )
    score_events = None
    
    argparser.add_argument(
        '-b', '--score-backgrounds',
        type=str,
        help="Score backgrounds file as a comma-separated text file (.csv, .txt), JSON (.json), or Excel (.xls) file"
    )
    score_backgrounds = None
    
    argparser.add_argument(
        '-t', '--time-mode',
        type=str,
        help="Mode of spacing between events. `generate': values must be set for each track in the score files. `abstract': values are computed from an abstract representation of an existing acoustic scene. `replicate': values are replicated from an existing acousting scene.",
        choices=['generate', 'abstract', 'replicate']
    )
    time_mode = 'generate'
    
    argparser.add_argument(
        '-R', '--ebr-mode',
        type=str,
        help="Mode for Event to Background power level ratio. `generate': values must be set for each track in the score files. `abstract': values are computed from an abstract representation of an existing acoustic scene. `replicate': values are replicated from an existing acousting scene.",
        choices=['generate', 'abstract', 'replicate']
    )
    ebr_mode = 'generate'
    
    argparser.add_argument(
        '-A', '--annotation-file',
        type=float,
        help="If -R or -m are selected, this provides the source for sourcing the times or EBRs from ANNOTATION_FILE. ANNOTATION_FILE must be comma-separated text file (.csv, .txt), JSON (.json), or Excel (.xls)."
    )
    annotation_file = None
    
    argparser.add_argument(
        '-a', '--audio-file',
        type=float,
        help="If -R or -m are selected, this provides the source for sourcing the times or EBRs from AUDIO_FILE. AUDIO_FILE must be a 44100Hz .wav file."
    )
    audio_file = None
    
    argparser.add_argument(
        '-v', '--figure-verbosity', action='count',
        help="Increase figure verbosity. (Default) 0 - Don't save or display figures, 1 - Save pictures but do not display them, 2 - Save and display figures"
    )
    figure_verbosity = None
    
    argparser.add_argument(
        '-C', '--channel-mode',
        type=str,
        help="number of audio channels contained in file. (Default) 'mono' - 1 channel (mono), 'classes' - As many channels as sound classes (events+textures), 'separate' - Same as 'classes', each channel is saved in a separate .wav file.",
        choices=['mono', 'classes', 'separate']
    )
    channel_mode = None
    
    argparser.add_argument(
        '-m', '--min-space',
        type=float,
        help="Minimum space allowed between successive events (seconds). If -1, then allow overlapping between events."
    )
    min_space = None
    
    argparser.add_argument(
        '-c', '--end-cut',
        action='store_true',
        help="If the last sample ends after the scene ends then: if enabled, cut the sample to duration, else remove the sample."
    )
    end_cut = None
    
    logging.basicConfig(level=logging.DEBUG)
    
    args = argparser.parse_args()
    if args.input_path:
        input_path = args.input_path
        logging.debug("Using `{}' as input path".format(input_path))
    if args.output_path:
        output_path = args.output_path
        logging.debug("Saving to `{}'".format(output_path))
    if args.scene_duration:
        if not (args.score_backgrounds or args.score_events):
            print("You must provide one of -e or -b")
        else:
            if args.ebr_mode:
                ebr_mode = args.ebr_mode
                if ebr_mode not in ['generate']:
                    logging.warning("`{}' not yet implemented for EBR_MODE, using default.".format(ebr_mode))
                    ebr_mode = 'generate'
            if args.time_mode:
                time_mode = args.time_mode
                if time_mode not in ['generate']:
                    logging.warning("`{}' not yet implemented for TIME_MODE, using default.".format(time_mode))
                    time_mode = 'generate'
            if args.annotation_file:
                annotations = read_annotations_file(args.annotation_file)
                
            scene_duration = float(args.scene_duration)
            
            if args.score_backgrounds:
                score_backgrounds = read_backgrounds_file(args.score_backgrounds)
            if args.score_events:
                score_events = read_events_file(args.score_events)

            simscene(input_path, output_path, scene_duration, score_events, score_backgrounds,
                     time_mode=time_mode,
                     ebr_mode=ebr_mode,
                     channel_mode=channel_mode,
                     annotation_file=annotation_file,
                     audio_file=audio_file,
                     figure_verbosity=figure_verbosity,
                     min_space=min_space,
                     end_cut=end_cut)