annotate python/simscene.py @ 51:ebf92ed7d680 tip master

Added -fd (--full-duration) argument.
author Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk>
date Sun, 30 Sep 2018 13:21:49 +0100
parents b11264117ddb
children
rev   line source
e@35 1 #!/bin/python
e@35 2 # -*- coding: utf-8 -*-
e@35 3 # For licensing please see: LICENSE
e@35 4 # Copyright (c) Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk>
e@35 5
e@35 6 # Argparse
e@35 7 import argparse
e@35 8
e@35 9 # Logging
e@35 10 import logging
e@35 11
e@35 12 # Pandas
e@35 13 import pandas as pd
e@35 14
e@35 15 # Numpy
e@35 16 import numpy as np
e@35 17
e@35 18 # Glob
e@35 19 import glob
e@35 20 import random
e@35 21
e@35 22 # Librosa
e@35 23 import librosa
e@35 24 import librosa.display
e@44 25
e@44 26 # PySoundfile
e@44 27 import soundfile as sf
e@35 28
e@35 29 # Matplotlib
e@35 30 import matplotlib.pyplot as plt
e@35 31
e@35 32 # Tabulate
e@35 33 from tabulate import tabulate
e@35 34
e@41 35
e@42 36 def _D(t, sr=44100):
e@35 37 """
e@35 38 Helper function: Converts time to samples
e@35 39 """
e@35 40 return int(t*sr)
e@35 41
e@42 42
e@35 43 def compute_energy(x):
e@35 44 return np.sqrt(np.mean(x**2))
e@35 45
e@35 46
e@41 47 def timedict_to_dataframe(timedict):
e@47 48 print(timedict)
e@46 49 return pd.DataFrame([(key, val[0], val[1], val[2]) for key in timedict for val in timedict[key]],
e@46 50 columns=('label', 'filename', 'start_time', 'end_time'))
e@41 51
e@47 52 def timedict_to_txt(timedict):
e@47 53 str_ = ""
e@47 54 for key in timedict:
e@47 55 for val in timedict[key]:
e@47 56 str_ += "{}\t{}\t{}\n".format(float(val[1]), float(val[2]), key)
e@47 57 str_ += '\n'
e@47 58 return str_
e@42 59
e@35 60 def render_pattern(fname, input_path, sr=44100):
e@35 61 pattern = read_pattern_file(fname)
e@35 62
e@41 63 # Store starting and end times in the format
e@41 64 # {'filename': (start_time, end_time)}
e@41 65
e@41 66 timesdict = {}
e@41 67
e@35 68 start_times_samples = []
e@35 69 end_times_samples = []
e@35 70 durations_samples = []
e@35 71 wav_files = []
e@41 72
e@41 73 pattern_timedict = []
e@41 74
e@35 75 for n in range(len(pattern)):
e@35 76 # Try loading the file,
e@35 77 sampleid = pattern['sampleid'].loc[n]
e@46 78 label = pattern['sampleid'].loc[n]
e@38 79 candidates = []
e@38 80 for pattern_format in ['xls', 'json', 'txt', 'csv']:
e@38 81 candidates += glob.glob('{}/pattern/{}*.{}'.format(input_path, sampleid, pattern_format))
e@35 82
e@38 83 if len(candidates) == 0:
e@42 84 candidates = glob.glob('{}/event/{}*wav'.format(input_path, sampleid))
e@38 85 chosen_fname = random.sample(candidates, 1)[0]
e@38 86
e@44 87 wav, SR = sf.read(chosen_fname)
e@38 88 else:
e@38 89 chosen_fname = random.sample(candidates, 1)[0]
e@38 90
e@38 91 logging.debug('Loading {}'.format(chosen_fname))
e@41 92 wav, SR, pattern_timedict = render_pattern(chosen_fname, input_path)
e@42 93
e@35 94 # For each sound in the pattern file, place it starting from starttime + an offset
e@35 95 # with a mean value of 0 and standard deviation of offset_stddev. The first event can
e@35 96 # not start earlier than time 0. If endtime is defined (not nan), then cut the event at
e@35 97 # end time.
e@35 98
e@35 99 # Read and assign an amplitude
e@35 100 amplitude_mean = float(pattern['amplitude'].loc[n])
e@35 101 amplitude_stddev = float(pattern['amplitude_stdev'].loc[n])
e@35 102 amplitude = amplitude_mean + np.random.randn()*amplitude_stddev
e@35 103 wav *= amplitude
e@35 104
e@42 105 start_time = max(float(pattern['start_time'].loc[n]), 0)
e@35 106 start_time_samples = int(start_time*SR)
e@35 107
e@35 108 fade_in_time = float(pattern['fade_in_time'].loc[n])
e@35 109 fade_out_time = float(pattern['fade_out_time'].loc[n])
e@35 110 end_time = float(pattern['end_time'].loc[n])
e@35 111
e@35 112 # If end_time is not defined (-1 or just empty)
e@35 113 # then just derive it from the length of the sample
e@35 114 if np.isnan(end_time) or float(end_time) == -1:
e@35 115 duration_samples = len(wav)
e@35 116 end_time_samples = start_time_samples + duration_samples
e@45 117 end_time = end_time_samples/float(SR)
e@45 118
e@35 119 elif end_time - start_time > len(wav)/float(SR):
e@35 120
e@35 121 # If given end_time is more than start_time + duration of sample
e@35 122 # then pad the file with zeros to reach the desired end time.
e@35 123 duration = end_time - start_time
e@35 124 duration_samples = int(duration*SR)
e@35 125 end_time_samples = start_time_samples + duration_samples
e@41 126
e@41 127 # Calculate end time in seconds
e@41 128 end_time = end_time_samples/float(SR)
e@41 129
e@35 130 wav_arr = np.zeros(duration_samples)
e@35 131 wav_arr[:len(wav)] = wav
e@35 132 wav = wav_arr
e@35 133 else:
e@35 134 duration = end_time - start_time
e@35 135 duration_samples = int(duration*SR)
e@35 136 end_time_samples = start_time_samples + duration_samples
e@35 137
e@35 138 event_render = fade(wav[:duration_samples], fade_in_time, fade_out_time)
e@35 139
e@35 140 start_times_samples.append(start_time_samples)
e@35 141 end_times_samples.append(end_time_samples)
e@35 142 durations_samples.append(duration_samples)
e@35 143 wav_files.append(event_render)
e@35 144
e@46 145 if label in timesdict:
e@46 146 timesdict[label].append((chosen_fname,start_time, end_time))
e@41 147 else:
e@46 148 timesdict[label] = [(chosen_fname,start_time, end_time)]
e@41 149
e@41 150 for pt in pattern_timedict:
e@41 151 if pt in timesdict:
e@41 152 timesdict[pt] += pattern_timedict[pt]
e@41 153 else:
e@41 154 timesdict[pt] = pattern_timedict[pt]
e@41 155
e@35 156 pattern_duration = end_time_samples
e@35 157 pattern_arr = np.zeros(pattern_duration)
e@35 158
e@35 159 for n, s in enumerate(start_times_samples):
e@35 160 wav = wav_files[n]
e@35 161 pattern_arr[s:s+len(wav)] = wav
e@41 162
e@41 163 return pattern_arr, 44100, timesdict
e@41 164
e@35 165
e@35 166 def read_events_file(fname):
e@35 167 if fname[-3:].lower() == 'xls':
e@35 168 df = pd.read_excel(fname)
e@35 169 elif fname[-4:].lower() == 'json':
e@35 170 df = pd.read_json(fname)
e@35 171 elif fname[-3:].lower() in ['txt']:
e@35 172 with open(fname) as f:
e@35 173 s = f.readline()
e@42 174 f.seek(0, 0)
e@35 175 if ',' in s:
e@35 176 sep = ','
e@35 177 elif '\t' in s:
e@35 178 sep = '\t'
e@35 179 else:
e@35 180 sep = ' '
e@35 181 logging.warning('Probably no header or malformed .csv. Will try to parse it raw.')
e@35 182 df = pd.read_csv(f, header=None, sep=sep)
e@42 183 df.columns = ['label',
e@42 184 'sampleid',
e@42 185 'ebr',
e@42 186 'ebr_stddev',
e@42 187 'mean_time_between_instances',
e@42 188 'time_between_instances_stddev',
e@42 189 'start_time',
e@42 190 'end_time',
e@42 191 'fade_in_time',
e@42 192 'fade_out_time']
e@35 193 elif fname[-3:].lower() in ['csv']:
e@35 194 df = pd.read_json(fname)
e@35 195
e@42 196 logging.debug('Using input:\n'+tabulate(df, headers='keys', tablefmt='psql'))
e@35 197 return df
e@35 198
e@41 199
e@35 200 def read_pattern_file(fname):
e@35 201 if fname[-3:].lower() == 'xls':
e@35 202 df = pd.read_excel(fname)
e@35 203 elif fname[-4:].lower() == 'json':
e@35 204 df = pd.read_json(fname)
e@35 205 elif fname[-3:].lower() in ['txt']:
e@35 206 with open(fname) as f:
e@35 207 s = f.readline()
e@42 208 f.seek(0, 0)
e@35 209 if ',' in s:
e@35 210 sep = ','
e@35 211 elif '\t' in s:
e@35 212 sep = '\t'
e@35 213 else:
e@35 214 sep = ' '
e@35 215 logging.warning('Probably no header or malformed .csv. Will try to parse it raw.')
e@35 216 df = pd.read_csv(f, header=None, sep=sep)
e@42 217 df.columns = ['eventid',
e@42 218 'start_time',
e@42 219 'end_time',
e@42 220 'time_offset_stdev',
e@42 221 'fade_in_time',
e@42 222 'fade_out_time',
e@42 223 'amplitude',
e@42 224 'amplitude_stdev']
e@35 225 elif fname[-3:].lower() in ['csv']:
e@35 226 df = pd.read_json(fname)
e@35 227
e@42 228 logging.debug('Using input:\n'+tabulate(df, headers='keys', tablefmt='psql'))
e@35 229 return df
e@41 230
e@41 231
e@35 232 def read_backgrounds_file(fname):
e@35 233 if fname[-3:].lower() == 'xls':
e@35 234 df = pd.read_excel(fname)
e@35 235 elif fname[-4:].lower() == 'json':
e@35 236 df = pd.read_json(fname)
e@35 237 elif fname[-3:].lower() in ['txt']:
e@35 238 with open(fname) as f:
e@35 239 s = f.readline()
e@42 240 f.seek(0, 0)
e@35 241 if ',' in s:
e@35 242 sep = ','
e@35 243 elif '\t' in s:
e@35 244 sep = '\t'
e@35 245 else:
e@35 246 sep = ' '
e@35 247 logging.warning('Probably no header or malformed .csv. Will try to parse it raw.')
e@35 248 df = pd.read_csv(f, header=None, sep=sep)
e@42 249 df.columns = ['label', 'sampleid', 'snr']
e@35 250 elif fname[-3:].lower() in ['csv']:
e@35 251 df = pd.read_json(fname)
e@35 252
e@42 253 logging.debug('Using input:\n'+tabulate(df, headers='keys', tablefmt='psql'))
e@35 254 return df
e@35 255
e@41 256
e@35 257 def read_annotations_file(fname):
e@35 258 if fname[-3:].lower() == 'xls':
e@35 259 df = pd.read_excel(fname)
e@35 260 elif fname[-4:].lower() == 'json':
e@35 261 df = pd.read_json(fname)
e@35 262 elif fname[-3:].lower() in ['txt', 'csv']:
e@35 263
e@35 264 with open(fname) as f:
e@35 265 header = f.readline()
e@35 266
e@35 267 s = f.readline()
e@42 268 f.seek(0, 0)
e@35 269 if ',' in s:
e@35 270 sep = ','
e@35 271 elif '\t' in s:
e@35 272 sep = '\t'
e@35 273 else:
e@35 274 sep = ' '
e@35 275 if sep in header:
e@35 276 logging.warning('Probably no header or malformed .csv. Will try to parse it raw.')
e@35 277 df = pd.read_csv(f, header=None, sep=sep)
e@35 278 df.columns = ['start', 'stop', 'class']
e@35 279 else:
e@41 280 df = pd.read_csv(f, sep=sep)
e@35 281 df.columns = ['start', 'stop', 'class']
e@35 282 df = None
e@35 283
e@35 284 logging.info('Using input:\n'+tabulate(df, headers='keys', tablefmt='psql'))
e@35 285 return df
e@35 286
e@41 287
e@35 288 def run_demo():
e@35 289 print("TODO: Implement run_demo()")
e@35 290
e@41 291
e@35 292 def fade(x, fade_in, fade_out, sr=44100):
e@35 293 """
e@35 294 Creates a fade-in-fade-out envelope
e@35 295 for audio array x.
e@35 296 """
e@35 297
e@35 298 if len(x) == 0:
e@35 299 return x
e@35 300
e@35 301 fade_in_samples = int(fade_in*sr)
e@35 302 fade_out_samples = int(fade_out*sr)
e@35 303
e@35 304 outp = np.ones_like(x)
e@35 305 for n in range(fade_in_samples):
e@35 306 outp[n] = n*1./fade_in_samples
e@35 307
e@35 308 for n in range(fade_out_samples):
e@35 309 outp[len(outp)-fade_out_samples+n] = 1-1./fade_out_samples*n
e@35 310 return outp*x
e@35 311
e@41 312
e@35 313 def simscene(input_path,
e@35 314 output_path,
e@35 315 scene_duration,
e@35 316 score_events,
e@35 317 score_backgrounds,
e@35 318 **kwargs):
e@47 319 logging.warning('BER ratios have not yet been verified')
e@42 320 SR = 44100 # Samplerate. Should probably not be hardcoded
e@35 321
e@35 322 events_df = score_events
e@35 323 backgrounds_df = score_backgrounds
e@41 324
e@41 325 # Store starting and ending times in the format
e@41 326 # {'filename': [(start_time, end_time), (start_time, end_time), ...]}
e@41 327 timedict = {}
e@41 328
e@35 329 # Create empty numpy array
e@35 330 scene_arr = np.zeros(int(scene_duration*SR))
e@35 331
e@35 332 if 'append_to_filename' in kwargs:
e@35 333 append_to_filename = kwargs['append_to_filename']
e@35 334 else:
e@35 335 append_to_filename = None
e@35 336
e@35 337 if 'end_cut' in kwargs:
e@35 338 end_cut = kwargs['end_cut']
e@35 339 else:
e@35 340 end_cut = False
e@35 341
e@35 342 if 'figure_verbosity' in kwargs:
e@35 343 figure_verbosity = kwargs['figure_verbosity']
e@35 344 else:
e@35 345 figure_verbosity = 0
e@35 346
e@35 347 if 'image_format' in kwargs:
e@35 348 image_format = kwargs['image_format']
e@35 349 else:
e@35 350 image_format = 'png'
e@47 351
e@47 352 if 'annot_format' in kwargs:
e@47 353 annot_format = kwargs['annot_format']
e@47 354 else:
e@47 355 annot_format = 'sed_eval'
e@51 356
e@51 357 if 'full_duration' in kwargs:
e@51 358 full_duration = True
e@51 359 else:
e@51 360 full_duration = False
e@35 361
e@35 362 # Stores the starting and ending times of every track for visualization
e@35 363 # purposes
e@35 364 scene_starting_times = []
e@35 365 scene_ending_times = []
e@35 366
e@35 367 # List of tracks
e@35 368 track_list = []
e@35 369 background_energies = []
e@41 370
e@35 371 for n in range(len(backgrounds_df)):
e@35 372 # Get label of background
e@35 373 label = str(backgrounds_df['label'].loc[n])
e@35 374
e@35 375 # First check if there are any pattern candidates. Give priorities
e@35 376 # To pattern files.
e@35 377 candidates = []
e@41 378
e@41 379 # List of pattern start and end times
e@41 380 pattern_timedict = []
e@41 381
e@35 382 for pattern_format in ['xls', 'json', 'txt', 'csv']:
e@42 383 candidates += glob.glob('{}/pattern/{}*.{}'.format(input_path,
e@42 384 backgrounds_df['sampleid'].loc[n],
e@42 385 pattern_format))
e@35 386
e@35 387 if len(candidates) == 0:
e@35 388 # If no patterns are found, search for normal audio files
e@35 389 candidates = glob.glob('{}/background/{}*.wav'.format(input_path, backgrounds_df['sampleid'].loc[n]))
e@35 390 chosen_fname = random.sample(candidates, 1)[0]
e@44 391 wav, sr = sf.read(chosen_fname)
e@35 392 else:
e@35 393 chosen_fname = random.sample(candidates, 1)[0]
e@41 394 wav, sr, pattern_timedict = render_pattern(chosen_fname, input_path)
e@41 395
e@35 396 duration = len(wav)/float(SR)
e@35 397 target_snr_db = float(backgrounds_df['snr'].loc[n])
e@35 398 target_snr = 10**(target_snr_db/20.0)
e@35 399
e@35 400 energy = compute_energy(wav)
e@35 401
e@41 402 logging.debug('{}:energy:{}'.format(label, energy))
e@41 403
e@35 404 if n == 0:
e@35 405 # For the first background track, snr
e@35 406 # gives an amount by which it's going to be scaled (i.e. make it more silent)
e@35 407 amplitude_factor = target_snr
e@35 408 wav *= amplitude_factor
e@35 409
e@35 410 if n > 0:
e@35 411 noise_energy = compute_energy(np.sum(np.array(track_list), axis=0))
e@41 412 logging.info('{}:noise_energy:{}'.format(label, noise_energy))
e@35 413
e@35 414 old_snr = energy/noise_energy
e@35 415 old_snr_db = 20*np.log10(old_snr)
e@41 416 logging.info('{}:old_snr:{}'.format(label, old_snr_db))
e@35 417
e@35 418 amplitude_factor = target_snr/old_snr
e@35 419
e@35 420 wav *= amplitude_factor
e@35 421 new_energy = compute_energy(wav)
e@35 422 new_snr = new_energy/noise_energy
e@35 423 new_snr_db = 20. * np.log10(new_snr)
e@41 424 logging.info('{}:new_snr:{}'.format(label, new_snr_db))
e@41 425
e@35 426 # Track array
e@35 427 track_arr = np.zeros(int(scene_duration*SR))
e@35 428 start_times = [0.0]
e@35 429 end_times = [start_times[-1]+len(wav)/float(SR)]
e@35 430
e@35 431 # Start with the first time in the list
e@35 432 new_start_time = start_times[-1]
e@35 433 new_end_time = end_times[-1]
e@35 434
e@46 435 if label in timedict:
e@46 436 timedict[label].append((chosen_fname, new_start_time, min(scene_duration, new_end_time)))
e@41 437 else:
e@46 438 timedict[label] = [(chosen_fname, new_start_time, min(scene_duration, new_end_time))]
e@41 439
e@35 440 while new_start_time < scene_duration:
e@35 441 offset = duration
e@35 442 new_start_time += offset
e@41 443
e@41 444 # If already exceeded scene, break
e@41 445 if new_start_time >= scene_duration:
e@41 446 break
e@41 447
e@35 448 new_end_time += offset
e@35 449
e@35 450 start_times.append(new_start_time)
e@35 451 end_times.append(new_end_time)
e@35 452
e@41 453 # Update timesdict noting where each filename starts and stops
e@46 454 if label in timedict:
e@46 455 timedict[label].append((chosen_fname, new_start_time, min(scene_duration, new_end_time)))
e@41 456 else:
e@46 457 timedict[label] = [(chosen_fname, new_start_time, min(scene_duration, new_end_time))]
e@41 458
e@41 459 # Also update the times from the patterns
e@41 460 for pt in pattern_timedict:
e@46 461 pattern_timedict[pt] = [(s0, s[1] + new_start_time, s[2] + new_start_time) for s in
e@41 462 pattern_timedict[pt]]
e@41 463
e@41 464 if pt in timedict:
e@41 465 timedict[pt] += pattern_timedict[pt]
e@41 466 else:
e@41 467 timedict[pt] = pattern_timedict[pt]
e@41 468
e@41 469 # And add those to the timedict dictionary
e@41 470
e@42 471 for t in start_times:
e@35 472 # We need to be careful with the limits here
e@35 473 # since numpy will just ignore indexing that
e@35 474 # exceeds
e@35 475
e@35 476 # Fading times in case we need to join many
e@35 477 # consecutive samples together.
e@35 478 # if n == 0:
e@35 479 # # Little fade-out, fade-in to smoothly repeat the
e@35 480 # # background.
e@35 481 # fade_in_time = 0.0
e@35 482 # fade_out_time = 0.01
e@35 483 # elif n > 0 and n < len(start_times) - 1:
e@35 484 # fade_in_time = 0.01
e@35 485 # fade_out_time = 0.01
e@35 486 # else:
e@35 487 # fade_in_time = 0.01
e@35 488 # fade_out_time = 0.0
e@42 489 begin = min(_D(t), len(track_arr))
e@42 490 end = min(len(track_arr), _D(t) + len(wav))
e@35 491
e@35 492 # Part of the wav to store
e@35 493 # part = fade(wav[:end-begin],fade_in_time,fade_out_time)
e@35 494 part = wav[:end-begin]
e@35 495 track_arr[begin:end] += part
e@35 496
e@35 497 track_list.append(track_arr)
e@35 498 scene_arr[:len(track_arr)] += track_arr
e@35 499
e@35 500 if channel_mode == 'separate':
e@35 501 librosa.output.write_wav('{}/{}_background_track.wav'.format(output_path, label), track_arr, SR)
e@35 502
e@35 503 F = librosa.stft(track_arr, 1024)
e@35 504 energy_prof = librosa.feature.rmse(S=F)
e@35 505 background_energies.append(energy_prof)
e@35 506
e@35 507 if figure_verbosity > 0:
e@35 508 plt.figure()
e@35 509 plt.subplot(3, 1, 1)
e@35 510 plt.title('`{}\' background waveform and spectrogram'.format(label))
e@41 511 librosa.display.waveplot(track_arr, sr=SR)
e@35 512
e@35 513 # Plot spectrogram
e@35 514 Fdb = librosa.amplitude_to_db(F)
e@35 515 plt.subplot(3, 1, 2)
e@35 516 librosa.display.specshow(Fdb, sr=SR, x_axis='time', y_axis='hz')
e@35 517
e@35 518 # Plot energy profile
e@35 519 plt.subplot(3, 1, 3)
e@35 520 time = np.linspace(0, len(track_arr)/SR, len(energy_prof.T))
e@35 521 plt.semilogy(time, energy_prof.T)
e@35 522 plt.xlim([0, len(track_arr)/SR])
e@35 523 plt.ylabel('energy (rms)')
e@41 524
e@35 525 # Tidy up and save to file
e@35 526 plt.tight_layout()
e@35 527 if append_to_filename:
e@42 528 plt.savefig('{}/background_{}_{}.{}'.format(output_path,
e@42 529 label,
e@42 530 append_to_filename,
e@42 531 image_format),
e@42 532 dpi=300)
e@35 533 else:
e@42 534 plt.savefig('{}/background_{}.{}'.format(output_path,
e@42 535 label,
e@42 536 image_format),
e@42 537 dpi=300)
e@35 538
e@35 539 # Compute total energy of background
e@35 540 if len(backgrounds_df) > 0:
e@35 541 background_arr = np.sum(track_list, 0)
e@35 542 B = librosa.stft(background_arr, 1024)
e@35 543 background_energy = librosa.feature.rmse(S=B).flatten()
e@35 544 else:
e@35 545 background_energy = 0.0
e@41 546
e@35 547 for n in range(len(events_df)):
e@35 548 # Get label of track
e@35 549 label = str(events_df['label'].loc[n])
e@35 550
e@35 551 # First check if there are any pattern candidates. Give priorities
e@35 552 # To pattern files.
e@35 553 candidates = []
e@41 554
e@41 555 # List of pattern start and end times
e@41 556 pattern_timedict = []
e@41 557
e@35 558 for pattern_format in ['xls', 'json', 'txt', 'csv']:
e@42 559 candidates += glob.glob('{}/pattern/{}*.{}'.format(input_path,
e@42 560 events_df['sampleid'].loc[n],
e@42 561 pattern_format))
e@35 562
e@35 563 if len(candidates) == 0:
e@35 564 # If no patterns are found, search for normal audio files
e@35 565 candidates = glob.glob('{}/event/{}*.wav'.format(input_path, events_df['sampleid'].loc[n]))
e@35 566 chosen_fname = random.sample(candidates, 1)[0]
e@44 567 wav, sr = sf.read(chosen_fname)
e@35 568 else:
e@35 569 chosen_fname = random.sample(candidates, 1)[0]
e@41 570 wav, sr, pattern_timedict = render_pattern(chosen_fname, input_path)
e@41 571
e@42 572 logging.debug(chosen_fname)
e@35 573 # Apply a fader envelope
e@35 574 fade_in_time = float(events_df['fade_in_time'].loc[n])
e@35 575 fade_out_time = float(events_df['fade_out_time'].loc[n])
e@35 576 wav = fade(wav, fade_in_time, fade_out_time)
e@35 577
e@35 578 # Set target EBR
e@42 579 target_ebr = 10**(float(events_df['ebr'].loc[n])/20.0 +
e@42 580 np.random.randn()*float(events_df['ebr_stddev'].loc[n])/20.0)
e@35 581
e@35 582 # Mean time between instances \mu.
e@35 583 mean_time_between_instances = events_df['mean_time_between_instances'].loc[n]
e@35 584 track_end_time = events_df['end_time'].loc[n]
e@35 585
e@35 586 # Track array
e@35 587 track_arr = np.zeros(int(scene_duration*SR))
e@35 588
e@42 589 # If \mu is -1, then play the event only once.
e@35 590 if mean_time_between_instances == -1:
e@42 591 track_arr[_D(events_df['start_time'].loc[n]):_D(events_df['start_time'].loc[n]) + len(wav)] += wav
e@35 592 start_times = [float(events_df['start_time'].loc[n])]
e@35 593 end_times = [float(events_df['end_time'].loc[n])]
e@41 594
e@41 595 new_start_time = start_times[-1]
e@41 596 new_end_time = end_times[-1]
e@41 597
e@46 598 if label in timedict:
e@46 599 timedict[label].append((chosen_fname, new_start_time, min(scene_duration, new_end_time)))
e@42 600 else:
e@46 601 timedict[label] = [(chosen_fname, new_start_time, min(scene_duration, new_end_time))]
e@42 602
e@41 603 for pt in pattern_timedict:
e@46 604 pattern_timedict[pt] = [(s[0], s[1] + new_start_time, s[2] + new_start_time) for s in
e@41 605 pattern_timedict[pt]]
e@41 606
e@41 607 if pt in timedict:
e@41 608 timedict[pt] += pattern_timedict[pt]
e@41 609 else:
e@41 610 timedict[pt] = pattern_timedict[pt]
e@41 611
e@35 612 else:
e@35 613 # If 0, then start next sample after this one (set it to the duration of the sample)
e@35 614 if mean_time_between_instances == 0:
e@35 615 mean_time_between_instances = len(wav)/float(SR)
e@51 616
e@51 617 # If we are using -fd (full_duration) for each event then mean_time_between_instances denotes time AFTER
e@51 618 # the end of the previous event.
e@51 619 if full_duration and mean_time_between_instances > 0:
e@51 620 mean_time_between_instances += len(wav)/float(SR)
e@35 621
e@35 622 # Store the successive starting and ending times of the events (given e.g. the model)
e@35 623 # in the following lists.
e@35 624 start_times = [events_df['start_time'].loc[n]]
e@35 625 end_times = [start_times[-1]+len(wav)/float(SR)]
e@35 626
e@35 627 # Start with the first time in the list
e@35 628 new_start_time = start_times[-1]
e@35 629 new_end_time = end_times[-1]
e@35 630
e@41 631 if chosen_fname in timedict:
e@46 632 timedict[label].append((chosen_fname, new_start_time, min(scene_duration, new_end_time)))
e@41 633 else:
e@46 634 timedict[label] = [(chosen_fname, new_start_time, min(scene_duration, new_end_time))]
e@41 635
e@35 636 # Until the scene is full
e@35 637 while new_start_time < track_end_time:
e@35 638 offset = float(mean_time_between_instances) +\
e@35 639 float(events_df['time_between_instances_stddev'].loc[n]*np.random.randn())
e@35 640 new_start_time += offset
e@41 641
e@41 642 # If already exceeded scene, break
e@41 643 if new_start_time >= scene_duration:
e@41 644 break
e@41 645
e@35 646 new_end_time += offset
e@35 647
e@35 648 # Only exception is if we have set the 'end_cut' flag
e@35 649 # and the end time of the event surpasses the end time
e@35 650 # of the track
e@35 651 if end_cut and new_end_time > track_end_time:
e@35 652 break
e@35 653 else:
e@35 654 start_times.append(new_start_time)
e@35 655 end_times.append(new_end_time)
e@35 656
e@46 657 if label in timedict:
e@46 658 timedict[label].append((chosen_fname, new_start_time, min(scene_duration, new_end_time)))
e@41 659 else:
e@46 660 timedict[label] = [(chosen_fname, new_start_time, min(scene_duration, new_end_time))]
e@41 661
e@41 662 # Also update the times from the patterns
e@41 663 for pt in pattern_timedict:
e@48 664 pattern_timedict[pt] = [(s[0], s[1] + new_start_time, s[2] + new_start_time) for s in
e@41 665 pattern_timedict[pt]]
e@41 666
e@41 667 if pt in timedict:
e@41 668 timedict[pt] += pattern_timedict[pt]
e@41 669 else:
e@41 670 timedict[pt] = pattern_timedict[pt]
e@41 671
e@35 672 for t in start_times:
e@35 673 # We need to be careful with the limits here
e@35 674 # since numpy will just ignore indexing that
e@35 675 # exceeds the size of the array
e@42 676 begin = min(_D(t), len(track_arr))
e@42 677 end = min(len(track_arr), _D(t) + len(wav))
e@35 678
e@35 679 # Part of the wav to store
e@35 680 part = wav[:end-begin]
e@35 681
e@35 682 # If wav file was concatenated, fade out
e@35 683 # quickly to avoid clicks
e@42 684 if len(wav) > len(part) > fade_out_time*SR:
e@35 685 part = fade(part, 0, fade_out_time)
e@35 686
e@35 687 track_arr[begin:end] += part
e@35 688
e@35 689 track_list.append(track_arr)
e@35 690 scene_arr[:len(track_arr)] += track_arr
e@35 691
e@35 692 # Compute energies
e@35 693 F = librosa.stft(track_arr, 1024)
e@35 694 energy_prof = librosa.feature.rmse(S=F).flatten()
e@35 695
e@35 696 # Compute current ebr
e@35 697
e@35 698 if len(backgrounds_df) > 0:
e@35 699 ebr_prof = energy_prof/background_energy[:len(energy_prof)].flatten()
e@35 700 curr_ebr = np.max(ebr_prof)
e@42 701 logging.debug('{}:Target ebr: {}db'.format(label,
e@42 702 20*np.log10(target_ebr)))
e@42 703 logging.debug('{}:Current track ebr: {}db'.format(label,
e@42 704 20*np.log10(curr_ebr)))
e@35 705
e@35 706 # Set correct ebr
e@35 707 track_arr = track_arr/curr_ebr*target_ebr
e@35 708
e@35 709 Fnew = librosa.stft(track_arr, 1024)
e@35 710 new_energy_prof = librosa.feature.rmse(S=Fnew).flatten()
e@35 711 new_ebr_prof = new_energy_prof/background_energy[:len(energy_prof)].flatten()
e@35 712 new_ebr = np.max(new_ebr_prof)
e@42 713 logging.debug('{}:New track ebr: {}db'.format(label, 20*np.log10(new_ebr)))
e@35 714
e@35 715 if channel_mode == 'separate':
e@44 716 sf.write('{}/{}_event_track.wav'.format(output_path, label),
e@42 717 track_arr/np.max(track_arr),
e@42 718 SR)
e@35 719
e@35 720 if figure_verbosity > 0:
e@35 721 plt.figure()
e@35 722
e@42 723 plt.subplot(3, 1, 1)
e@35 724 plt.title('`{}\' event waveform and spectrogram'.format(label))
e@35 725
e@42 726 librosa.display.waveplot(track_arr, sr=SR)
e@35 727 Fdb = librosa.amplitude_to_db(F)
e@35 728 plt.subplot(3, 1, 2)
e@35 729 librosa.display.specshow(Fdb, sr=SR, x_axis='time', y_axis='hz')
e@35 730
e@35 731 # Plot energy profile
e@35 732 plt.subplot(3, 1, 3)
e@35 733 time = np.linspace(0, len(track_arr)/SR, len(energy_prof.T))
e@35 734 plt.semilogy(time, energy_prof.T)
e@35 735 plt.xlim([0, len(track_arr)/SR])
e@35 736 plt.ylabel('energy (rms)')
e@35 737
e@35 738 plt.tight_layout()
e@35 739 if append_to_filename:
e@35 740 plt.savefig('{}/event_{}_{}.{}'.format(output_path, label, append_to_filename, image_format), dpi=300)
e@35 741 else:
e@35 742 plt.savefig('{}/event_{}.{}'.format(output_path, label, image_format), dpi=300)
e@35 743
e@35 744 scene_starting_times.append((label, start_times))
e@35 745 scene_ending_times.append((label, end_times))
e@35 746
e@35 747 if figure_verbosity > 0:
e@35 748 plt.figure()
e@42 749 ax0 = plt.subplot(3, 1, 1)
e@35 750 plt.title('Synthesized Scene')
e@35 751 librosa.display.waveplot(scene_arr, sr=SR)
e@35 752 F = librosa.stft(scene_arr)
e@35 753 Fdb = librosa.amplitude_to_db(F)
e@42 754 ax1 = plt.subplot(3, 1, 2)
e@35 755 librosa.display.specshow(Fdb, sr=SR, x_axis='time', y_axis='hz')
e@42 756 ax2 = plt.subplot(3, 1, 3)
e@42 757 ax2.set_xlim([0, scene_duration])
e@35 758
e@35 759 # Get labels
e@35 760 labels = [s[0] for s in scene_starting_times]
e@35 761
e@35 762 # If background is active
e@35 763 if len(backgrounds_df) > 0:
e@35 764 labels.append('background')
e@35 765
e@35 766 # Set y axis limit. With a padding of 0.5.
e@35 767 ax2.set_ylim([-0.5, len(labels)-0.5])
e@35 768
e@35 769 plt.yticks(range(len(labels)), labels)
e@35 770
e@35 771 for n in range(len(scene_starting_times)):
e@35 772 start_times = scene_starting_times[n][1]
e@35 773 end_times = scene_ending_times[n][1]
e@35 774 color = ['r', 'g', 'y'][n % 3]
e@35 775
e@35 776 for m in range(len(start_times)):
e@35 777 plt.hlines(y=float(n), xmin=start_times[m], xmax=end_times[m], alpha=0.5, color=color, linewidth=4)
e@35 778 if figure_verbosity > 2:
e@35 779 ax0.axvline(start_times[m], color=color, alpha=0.1)
e@35 780 ax0.axvline(end_times[m], color=color, alpha=0.1)
e@35 781 ax0.axvspan(start_times[m], end_times[m], color=color, alpha=0.1)
e@35 782 ax1.axvline(start_times[m], color=color, alpha=0.1)
e@35 783 ax1.axvline(end_times[m], color=color, alpha=0.1)
e@35 784 ax1.axvline(end_times[m], color=color, alpha=0.1)
e@35 785 ax1.axvspan(start_times[m], end_times[m], color=color, alpha=0.1)
e@35 786 ax2.axvline(start_times[m], color=color, alpha=0.1)
e@35 787 ax2.axvline(end_times[m], color=color, alpha=0.1)
e@35 788 ax2.axvline(end_times[m], color=color, alpha=0.1)
e@35 789 ax2.axvspan(start_times[m], end_times[m], color=color, alpha=0.1)
e@35 790
e@35 791 if len(backgrounds_df) > 0:
e@35 792 plt.axhline(y=len(scene_starting_times), alpha=0.5, color='k', linewidth=4)
e@35 793
e@35 794 plt.tight_layout()
e@35 795
e@35 796 if append_to_filename:
e@35 797 plt.savefig('{}/scene_{}.{}'.format(output_path, append_to_filename, image_format), dpi=300)
e@35 798 else:
e@35 799 plt.savefig('{}/scene.{}'.format(output_path, image_format), dpi=300)
e@41 800
e@47 801 if annot_format == 'sed_eval':
e@47 802 timedict_txt = timedict_to_txt(timedict)
e@47 803 logging.debug(timedict_txt)
e@41 804
e@47 805 if append_to_filename:
e@47 806 with open('{}/scene_{}_offsets.csv'.format(output_path, append_to_filename), 'w') as f:
e@47 807 f.write(timedict_txt)
e@47 808 else:
e@47 809 with open('{}/scene_offsets.csv'.format(output_path), 'w') as f:
e@47 810 f.write(timedict_txt)
e@47 811
e@47 812 elif annot_format == 'pandas':
e@47 813 timedict_df = timedict_to_dataframe(timedict)
e@47 814 logging.debug(timedict_df)
e@47 815
e@47 816 if append_to_filename:
e@47 817 timedict_df.to_csv('{}/scene_{}_offsets.csv'.format(output_path, append_to_filename))
e@47 818 else:
e@47 819 timedict_df.to_csv('{}/scene_offsets.csv'.format(output_path))
e@41 820
e@35 821 if figure_verbosity > 1:
e@35 822 plt.show()
e@35 823
e@35 824 # Replace nans (i.e. because of division-by-zero) of the scene with zeros.
e@35 825 scene_arr = np.nan_to_num(scene_arr)
e@35 826
e@35 827 if channel_mode == 'mono':
e@35 828 if append_to_filename:
e@44 829 sf.write('{}/scene_{}.wav'.format(output_path, append_to_filename), scene_arr, SR)
e@35 830 else:
e@44 831 sf.write('{}/scene.wav'.format(output_path), scene_arr, SR)
e@41 832
e@41 833 # Print timesdict
e@35 834
e@35 835 return scene_arr
e@41 836
e@41 837
e@35 838 def not_implemented():
e@41 839 logging.info("TODO: not implemented")
e@41 840
e@41 841
e@41 842 if __name__ == "__main__":
e@35 843 """
e@35 844 Main function, parses options and calls the simscene generation function
e@35 845 or a demo. The options given are almost identical to Lagrange et al's
e@35 846 simscene.
e@35 847 """
e@35 848 argparser = argparse.ArgumentParser(
e@35 849 description="SimScene.py acoustic scene generator",
e@35 850 )
e@35 851 argparser.add_argument(
e@35 852 'input_path',
e@35 853 type=str,
e@42 854 help="Path of a directory containing wave files for sound backgrounds"
e@42 855 "(in the `background' sub-directory) or events (in `event')"
e@35 856 )
e@42 857
e@42 858 input_path = '.'
e@42 859
e@35 860 argparser.add_argument(
e@35 861 'output_path',
e@35 862 type=str,
e@35 863 help="The directory the generated scenes and annotations will reside."
e@42 864 )
e@42 865
e@42 866 output_path = '.'
e@42 867
e@35 868 argparser.add_argument(
e@35 869 'scene_duration',
e@35 870 type=float,
e@35 871 help="Duration of scene in seconds",
e@35 872 )
e@35 873 scene_duration = None
e@35 874
e@35 875 argparser.add_argument(
e@35 876 '-e', '--score-events',
e@35 877 type=str,
e@35 878 help="Score events file as a comma-separated text file (.csv, .txt), JSON (.json), or Excel (.xls) file"
e@35 879 )
e@35 880 score_events = None
e@35 881
e@35 882 argparser.add_argument(
e@35 883 '-b', '--score-backgrounds',
e@35 884 type=str,
e@35 885 help="Score backgrounds file as a comma-separated text file (.csv, .txt), JSON (.json), or Excel (.xls) file"
e@35 886 )
e@35 887 score_backgrounds = None
e@35 888
e@35 889 argparser.add_argument(
e@35 890 '--tag',
e@35 891 type=str,
e@35 892 help="Append _TAG_XXX to filenames, where XXX is an increment."
e@35 893 )
e@35 894 tag = None
e@35 895
e@35 896 argparser.add_argument(
e@35 897 '-N',
e@35 898 type=int,
e@42 899 help="Generate N instances of the scene. If not specified only generate a single instance. Note that if N > 1, "
e@42 900 "then the verbosity must be less or equal to 1"
e@35 901 )
e@35 902 generate_n = 1
e@35 903
e@35 904 argparser.add_argument(
e@35 905 '-t', '--time-mode',
e@35 906 type=str,
e@42 907 help="Mode of spacing between events. `generate': values must be set for each track in the score files. "
e@42 908 "`abstract': values are computed from an abstract representation of an existing acoustic scene. "
e@42 909 "`replicate': values are replicated from an existing acousting scene. (NOT IMPLEMENTED)",
e@35 910 choices=['generate', 'abstract', 'replicate']
e@35 911 )
e@35 912 time_mode = 'generate'
e@51 913
e@51 914 argparser.add_argument(
e@51 915 '-fd', '--full-duration',
e@51 916 action='store_true',
e@51 917 help="If enabled, times specified in the recipe refer to after the previous file finishes."
e@51 918 )
e@51 919 full_duration = False
e@51 920
e@35 921 argparser.add_argument(
e@35 922 '-R', '--ebr-mode',
e@35 923 type=str,
e@42 924 help="Mode for Event to Background power level ratio. `generate': values must be set for each track in the "
e@42 925 "score files. `abstract': values are computed from an abstract representation of an existing acoustic "
e@42 926 "scene. `replicate': values are replicated from an existing acousting scene. (NOT IMPLEMENTED)",
e@35 927 choices=['generate', 'abstract', 'replicate']
e@35 928 )
e@35 929 ebr_mode = 'generate'
e@35 930
e@35 931 argparser.add_argument(
e@35 932 '-A', '--annotation-file',
e@35 933 type=float,
e@42 934 help="If -R or -m are selected, this provides the source for sourcing the times or EBRs from ANNOTATION_FILE. "
e@42 935 "ANNOTATION_FILE must be comma-separated text file (.csv, .txt), JSON (.json), or Excel (.xls). "
e@42 936 "(NOT IMPLEMENTED)"
e@35 937 )
e@35 938 annotation_file = None
e@35 939
e@35 940 argparser.add_argument(
e@35 941 '-a', '--audio-file',
e@35 942 type=float,
e@42 943 help="If -R or -m are selected, this provides the source for sourcing the times or EBRs "
e@42 944 "from AUDIO_FILE. AUDIO_FILE must be a 44100Hz .wav file. (NOT IMPLEMENTED)"
e@35 945 )
e@35 946 audio_file = None
e@35 947
e@35 948 argparser.add_argument(
e@35 949 '-v', '--figure-verbosity', action='count',
e@42 950 help="Increase figure verbosity. (Default) 0 - Don't save or display figures, 1 - Save pictures but do not "
e@42 951 "display them, 2 - Save and display figures, 3 - Add shades over the events in the final plot"
e@35 952 )
e@35 953 figure_verbosity = 0
e@35 954
e@35 955 argparser.add_argument(
e@35 956 '-x', '--image-format',
e@35 957 help="Image format for the figures",
e@35 958 choices=['png', 'jpg', 'pdf']
e@35 959 )
e@35 960 image_format = 'png'
e@35 961
e@35 962 argparser.add_argument(
e@35 963 '-C', '--channel-mode',
e@35 964 type=str,
e@42 965 help="number of audio channels contained in file. (Default) 'mono' - 1 channel (mono), 'separate' - Same as "
e@42 966 "'classes', each channel is saved in a separate .wav file.",
e@35 967 choices=['mono', 'separate']
e@35 968 )
e@35 969 channel_mode = 'mono'
e@35 970
e@35 971 argparser.add_argument(
e@35 972 '-c', '--end-cut',
e@35 973 action='store_true',
e@42 974 help="If the last sample ends after the scene ends then: if enabled, cut the sample to duration, "
e@42 975 "else remove the sample."
e@35 976 )
e@35 977 end_cut = None
e@42 978
e@42 979 argparser.add_argument(
e@42 980 '-L', '--logging-level',
e@42 981 type=str,
e@42 982 help="Set lowest logging level",
e@42 983 choices=['debug', 'warning', 'info']
e@42 984 )
e@42 985
e@47 986 argparser.add_argument(
e@47 987 '--annot-format',
e@47 988 type=str,
e@47 989 help="Annotation format for generated scenes. Choices are: 'sed_eval' (default) - Format appropriate for "
e@47 990 "DCASE 2017 challenge evaluator, 'pandas' - A more detailed format for the form <label, orig_filename, "
e@47 991 "start, stop>",
e@47 992 choices=['sed_eval', 'pandas']
e@47 993 )
e@47 994
e@35 995 args = argparser.parse_args()
e@42 996
e@42 997 if args.logging_level:
e@42 998 if args.logging_level == 'debug':
e@42 999 logging.basicConfig(level=logging.DEBUG)
e@42 1000 elif args.logging_level == 'info':
e@42 1001 logging.basicConfig(level=logging.INFO)
e@42 1002 elif args.logging_level == 'warning':
e@42 1003 logging.basicConfig(level=logging.WARNING)
e@42 1004 else:
e@42 1005 logging.basicConfig(level=logging.INFO)
e@42 1006
e@35 1007 if args.input_path:
e@35 1008 input_path = args.input_path
e@35 1009 logging.debug("Using `{}' as input path".format(input_path))
e@35 1010 if args.output_path:
e@35 1011 output_path = args.output_path
e@35 1012 logging.debug("Saving to `{}'".format(output_path))
e@51 1013 if args.full_duration:
e@51 1014 full_duration = True
e@35 1015 if args.scene_duration:
e@35 1016 if not (args.score_backgrounds or args.score_events):
e@35 1017 print("You must provide one of -e or -b")
e@35 1018 else:
e@35 1019 if args.image_format:
e@35 1020 image_format = args.image_format
e@35 1021 if args.channel_mode:
e@35 1022 channel_mode = args.channel_mode
e@35 1023 if args.ebr_mode:
e@35 1024 ebr_mode = args.ebr_mode
e@35 1025 if ebr_mode not in ['generate']:
e@35 1026 logging.warning("`{}' not yet implemented for EBR_MODE, using default.".format(ebr_mode))
e@35 1027 ebr_mode = 'generate'
e@35 1028 if args.time_mode:
e@35 1029 time_mode = args.time_mode
e@35 1030 if time_mode not in ['generate']:
e@35 1031 logging.warning("`{}' not yet implemented for TIME_MODE, using default.".format(time_mode))
e@35 1032 time_mode = 'generate'
e@35 1033 if args.annotation_file:
e@35 1034 annotations = read_annotations_file(args.annotation_file)
e@35 1035
e@35 1036 scene_duration = float(args.scene_duration)
e@35 1037
e@35 1038 if args.score_backgrounds:
e@35 1039 score_backgrounds = read_backgrounds_file(args.score_backgrounds)
e@35 1040 else:
e@35 1041 score_backgrounds = []
e@35 1042
e@35 1043 if args.score_events:
e@35 1044 score_events = read_events_file(args.score_events)
e@35 1045 else:
e@35 1046 score_events = []
e@35 1047
e@35 1048 if args.figure_verbosity:
e@35 1049 figure_verbosity = args.figure_verbosity
e@35 1050
e@35 1051 if args.N:
e@35 1052 generate_n = args.N
e@35 1053
e@35 1054 if args.tag:
e@35 1055 tag = args.tag
e@35 1056
e@35 1057 if generate_n == 1:
e@35 1058 append_to_filename = None
e@35 1059 simscene(input_path, output_path, scene_duration, score_events, score_backgrounds,
e@35 1060 time_mode=time_mode,
e@35 1061 ebr_mode=ebr_mode,
e@35 1062 channel_mode=channel_mode,
e@35 1063 annotation_file=annotation_file,
e@35 1064 audio_file=audio_file,
e@35 1065 figure_verbosity=figure_verbosity,
e@35 1066 end_cut=end_cut,
e@35 1067 image_format=image_format,
e@51 1068 append_to_filename=append_to_filename,
e@51 1069 full_duration=full_duration)
e@35 1070 else:
e@35 1071 for n in range(generate_n):
e@35 1072 if tag:
e@35 1073 append_to_filename = '{}_{}'.format(tag, n)
e@35 1074 else:
e@35 1075 append_to_filename = '{}'.format(n)
e@35 1076
e@35 1077 logging.info("Generating scene {}".format(n))
e@35 1078
e@35 1079 simscene(input_path, output_path, scene_duration, score_events, score_backgrounds,
e@35 1080 time_mode=time_mode,
e@35 1081 ebr_mode=ebr_mode,
e@35 1082 channel_mode=channel_mode,
e@35 1083 annotation_file=annotation_file,
e@35 1084 audio_file=audio_file,
e@35 1085 figure_verbosity=min(figure_verbosity, 1),
e@35 1086 end_cut=end_cut,
e@35 1087 image_format=image_format,
e@51 1088 append_to_filename=append_to_filename,
e@51 1089 full_duration=full_duration)