Chris@31: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ Chris@31: Chris@31: /* Chris@31: Silvet Chris@31: Chris@31: A Vamp plugin for note transcription. Chris@31: Centre for Digital Music, Queen Mary University of London. Chris@31: Chris@31: This program is free software; you can redistribute it and/or Chris@31: modify it under the terms of the GNU General Public License as Chris@31: published by the Free Software Foundation; either version 2 of the Chris@31: License, or (at your option) any later version. See the file Chris@31: COPYING included with this distribution for more information. Chris@31: */ Chris@31: Chris@31: #include "Silvet.h" Chris@34: #include "EM.h" Chris@31: Chris@152: #include Chris@31: Chris@152: #include "MedianFilter.h" Chris@152: #include "constant-q-cpp/src/dsp/Resampler.h" Chris@246: #include "flattendynamics-ladspa.h" Chris@298: #include "LiveInstruments.h" Chris@31: Chris@31: #include Chris@31: Chris@32: #include Chris@32: Chris@356: #if (defined(MAX_EM_THREADS) && (MAX_EM_THREADS > 1)) Chris@356: #include Chris@356: using std::future; Chris@356: using std::async; Chris@356: #endif Chris@356: Chris@31: using std::vector; Chris@48: using std::cout; Chris@31: using std::cerr; Chris@31: using std::endl; Chris@311: using std::pair; Chris@356: Chris@40: using Vamp::RealTime; Chris@31: Chris@31: static int processingSampleRate = 44100; Chris@298: Chris@298: static int binsPerSemitoneLive = 1; Chris@298: static int binsPerSemitoneNormal = 5; Chris@170: Chris@272: static int minInputSampleRate = 100; Chris@272: static int maxInputSampleRate = 192000; Chris@272: Chris@316: static const Silvet::ProcessingMode defaultMode = Silvet::HighQualityMode; Chris@316: Chris@31: Silvet::Silvet(float inputSampleRate) : Chris@31: Plugin(inputSampleRate), Chris@161: m_instruments(InstrumentPack::listInstrumentPacks()), Chris@298: m_liveInstruments(LiveAdapter::adaptAll(m_instruments)), Chris@31: m_resampler(0), Chris@246: m_flattener(0), Chris@110: m_cq(0), Chris@316: m_mode(defaultMode), Chris@166: m_fineTuning(false), Chris@178: m_instrument(0), Chris@313: m_colsPerSec(50), Chris@313: m_haveStartTime(false) Chris@31: { Chris@31: } Chris@31: Chris@31: Silvet::~Silvet() Chris@31: { Chris@31: delete m_resampler; Chris@246: delete m_flattener; Chris@31: delete m_cq; Chris@41: for (int i = 0; i < (int)m_postFilter.size(); ++i) { Chris@41: delete m_postFilter[i]; Chris@41: } Chris@31: } Chris@31: Chris@31: string Chris@31: Silvet::getIdentifier() const Chris@31: { Chris@31: return "silvet"; Chris@31: } Chris@31: Chris@31: string Chris@31: Silvet::getName() const Chris@31: { Chris@31: return "Silvet Note Transcription"; Chris@31: } Chris@31: Chris@31: string Chris@31: Silvet::getDescription() const Chris@31: { Chris@191: return "Estimate the note onsets, pitches, and durations that make up a music recording."; Chris@31: } Chris@31: Chris@31: string Chris@31: Silvet::getMaker() const Chris@31: { Chris@191: return "Queen Mary, University of London"; Chris@31: } Chris@31: Chris@31: int Chris@31: Silvet::getPluginVersion() const Chris@31: { Chris@309: return 3; Chris@31: } Chris@31: Chris@31: string Chris@31: Silvet::getCopyright() const Chris@31: { Chris@191: return "Method by Emmanouil Benetos and Simon Dixon; plugin by Chris Cannam and Emmanouil Benetos. GPL licence."; Chris@31: } Chris@31: Chris@31: Silvet::InputDomain Chris@31: Silvet::getInputDomain() const Chris@31: { Chris@31: return TimeDomain; Chris@31: } Chris@31: Chris@31: size_t Chris@31: Silvet::getPreferredBlockSize() const Chris@31: { Chris@31: return 0; Chris@31: } Chris@31: Chris@31: size_t Chris@31: Silvet::getPreferredStepSize() const Chris@31: { Chris@31: return 0; Chris@31: } Chris@31: Chris@31: size_t Chris@31: Silvet::getMinChannelCount() const Chris@31: { Chris@31: return 1; Chris@31: } Chris@31: Chris@31: size_t Chris@31: Silvet::getMaxChannelCount() const Chris@31: { Chris@31: return 1; Chris@31: } Chris@31: Chris@31: Silvet::ParameterList Chris@31: Silvet::getParameterDescriptors() const Chris@31: { Chris@31: ParameterList list; Chris@110: Chris@110: ParameterDescriptor desc; Chris@110: desc.identifier = "mode"; Chris@110: desc.name = "Processing mode"; Chris@110: desc.unit = ""; Chris@341: desc.description = "Sets the tradeoff of processing speed against transcription quality. Live mode is much faster and detects notes with relatively low latency; Intensive mode (the default) is slower but will almost always produce better results."; Chris@110: desc.minValue = 0; Chris@344: desc.maxValue = 1; Chris@316: desc.defaultValue = int(defaultMode); Chris@110: desc.isQuantized = true; Chris@110: desc.quantizeStep = 1; Chris@341: desc.valueNames.push_back("Live (faster and lower latency)"); Chris@165: desc.valueNames.push_back("Intensive (higher quality)"); Chris@161: list.push_back(desc); Chris@161: Chris@176: desc.identifier = "instrument"; Chris@176: desc.name = "Instrument"; Chris@161: desc.unit = ""; Chris@271: desc.description = "The instrument or instruments known to be present in the recording. This affects the set of instrument templates used, as well as the expected level of polyphony in the output. Using a more limited set of instruments than the default will also make the plugin run faster.\nNote that this plugin cannot isolate instruments: you can't use this setting to request notes from only one instrument in a recording with several. Instead, use this as a hint to the plugin about which instruments are actually present."; Chris@161: desc.minValue = 0; Chris@162: desc.maxValue = m_instruments.size()-1; Chris@162: desc.defaultValue = 0; Chris@161: desc.isQuantized = true; Chris@161: desc.quantizeStep = 1; Chris@161: desc.valueNames.clear(); Chris@162: for (int i = 0; i < int(m_instruments.size()); ++i) { Chris@162: desc.valueNames.push_back(m_instruments[i].name); Chris@162: } Chris@166: list.push_back(desc); Chris@161: Chris@166: desc.identifier = "finetune"; Chris@166: desc.name = "Return fine pitch estimates"; Chris@166: desc.unit = ""; Chris@271: desc.description = "Return pitch estimates at finer than semitone resolution. This works only in Intensive mode. Notes that appear to drift in pitch will be split up into shorter notes with individually finer pitches."; Chris@166: desc.minValue = 0; Chris@166: desc.maxValue = 1; Chris@166: desc.defaultValue = 0; Chris@166: desc.isQuantized = true; Chris@166: desc.quantizeStep = 1; Chris@166: desc.valueNames.clear(); Chris@110: list.push_back(desc); Chris@110: Chris@31: return list; Chris@31: } Chris@31: Chris@31: float Chris@31: Silvet::getParameter(string identifier) const Chris@31: { Chris@110: if (identifier == "mode") { Chris@297: return (float)(int)m_mode; Chris@166: } else if (identifier == "finetune") { Chris@166: return m_fineTuning ? 1.f : 0.f; Chris@176: } else if (identifier == "instrument") { Chris@162: return m_instrument; Chris@110: } Chris@31: return 0; Chris@31: } Chris@31: Chris@31: void Chris@31: Silvet::setParameter(string identifier, float value) Chris@31: { Chris@110: if (identifier == "mode") { Chris@297: m_mode = (ProcessingMode)(int)(value + 0.5); Chris@166: } else if (identifier == "finetune") { Chris@166: m_fineTuning = (value > 0.5); Chris@176: } else if (identifier == "instrument") { Chris@162: m_instrument = lrintf(value); Chris@110: } Chris@31: } Chris@31: Chris@31: Silvet::ProgramList Chris@31: Silvet::getPrograms() const Chris@31: { Chris@31: ProgramList list; Chris@31: return list; Chris@31: } Chris@31: Chris@31: string Chris@31: Silvet::getCurrentProgram() const Chris@31: { Chris@31: return ""; Chris@31: } Chris@31: Chris@31: void Chris@31: Silvet::selectProgram(string name) Chris@31: { Chris@31: } Chris@31: Chris@31: Silvet::OutputList Chris@31: Silvet::getOutputDescriptors() const Chris@31: { Chris@31: OutputList list; Chris@31: Chris@31: OutputDescriptor d; Chris@51: d.identifier = "notes"; Chris@51: d.name = "Note transcription"; Chris@329: d.description = "Overall note transcription. Each note has time, duration, estimated fundamental frequency, and a synthetic MIDI velocity (1-127) estimated from the strength of the pitch in the mixture."; Chris@41: d.unit = "Hz"; Chris@31: d.hasFixedBinCount = true; Chris@31: d.binCount = 2; Chris@41: d.binNames.push_back("Frequency"); Chris@31: d.binNames.push_back("Velocity"); Chris@31: d.hasKnownExtents = false; Chris@31: d.isQuantized = false; Chris@31: d.sampleType = OutputDescriptor::VariableSampleRate; Chris@246: d.sampleRate = processingSampleRate / (m_cq ? m_cq->getColumnHop() : 62); Chris@31: d.hasDuration = true; Chris@32: m_notesOutputNo = list.size(); Chris@32: list.push_back(d); Chris@32: Chris@319: d.identifier = "onsets"; Chris@319: d.name = "Note onsets"; Chris@323: d.description = "Note onsets, without durations. These can be calculated sooner than complete notes, because it isn't necessary to wait for a note to finish before returning its feature. Each event has time, estimated fundamental frequency in Hz, and a synthetic MIDI velocity (1-127) estimated from the strength of the pitch in the mixture."; Chris@319: d.unit = "Hz"; Chris@319: d.hasFixedBinCount = true; Chris@319: d.binCount = 2; Chris@319: d.binNames.push_back("Frequency"); Chris@319: d.binNames.push_back("Velocity"); Chris@319: d.hasKnownExtents = false; Chris@319: d.isQuantized = false; Chris@319: d.sampleType = OutputDescriptor::VariableSampleRate; Chris@319: d.sampleRate = processingSampleRate / (m_cq ? m_cq->getColumnHop() : 62); Chris@319: d.hasDuration = false; Chris@319: m_onsetsOutputNo = list.size(); Chris@319: list.push_back(d); Chris@319: Chris@336: d.identifier = "onoffsets"; Chris@336: d.name = "Note onsets and offsets"; Chris@336: d.description = "Note onsets and offsets as separate events. Each onset event has time, estimated fundamental frequency in Hz, and a synthetic MIDI velocity (1-127) estimated from the strength of the pitch in the mixture. Offsets are represented in the same way but with a velocity of 0."; Chris@336: d.unit = "Hz"; Chris@336: d.hasFixedBinCount = true; Chris@336: d.binCount = 2; Chris@336: d.binNames.push_back("Frequency"); Chris@336: d.binNames.push_back("Velocity"); Chris@336: d.hasKnownExtents = false; Chris@336: d.isQuantized = false; Chris@336: d.sampleType = OutputDescriptor::VariableSampleRate; Chris@336: d.sampleRate = processingSampleRate / (m_cq ? m_cq->getColumnHop() : 62); Chris@336: d.hasDuration = false; Chris@336: m_onOffsetsOutputNo = list.size(); Chris@336: list.push_back(d); Chris@336: Chris@178: d.identifier = "timefreq"; Chris@178: d.name = "Time-frequency distribution"; Chris@271: d.description = "Filtered constant-Q time-frequency distribution as used as input to the expectation-maximisation algorithm."; Chris@178: d.unit = ""; Chris@178: d.hasFixedBinCount = true; Chris@298: d.binCount = getPack(0).templateHeight; Chris@178: d.binNames.clear(); Chris@178: if (m_cq) { Chris@294: char name[50]; Chris@298: for (int i = 0; i < getPack(0).templateHeight; ++i) { Chris@178: // We have a 600-bin (10 oct 60-bin CQ) of which the Chris@178: // lowest-frequency 55 bins have been dropped, for a Chris@178: // 545-bin template. The native CQ bins go high->low Chris@178: // frequency though, so these are still the first 545 bins Chris@178: // as reported by getBinFrequency, though in reverse order Chris@178: float freq = m_cq->getBinFrequency Chris@298: (getPack(0).templateHeight - i - 1); Chris@178: sprintf(name, "%.1f Hz", freq); Chris@178: d.binNames.push_back(name); Chris@178: } Chris@178: } Chris@178: d.hasKnownExtents = false; Chris@178: d.isQuantized = false; Chris@178: d.sampleType = OutputDescriptor::FixedSampleRate; Chris@178: d.sampleRate = m_colsPerSec; Chris@178: d.hasDuration = false; Chris@178: m_fcqOutputNo = list.size(); Chris@178: list.push_back(d); Chris@178: Chris@294: d.identifier = "pitchactivation"; Chris@294: d.name = "Pitch activation distribution"; Chris@294: d.description = "Pitch activation distribution resulting from expectation-maximisation algorithm, prior to note extraction."; Chris@294: d.unit = ""; Chris@294: d.hasFixedBinCount = true; Chris@298: d.binCount = getPack(0).templateNoteCount; Chris@294: d.binNames.clear(); Chris@294: if (m_cq) { Chris@298: for (int i = 0; i < getPack(0).templateNoteCount; ++i) { Chris@336: d.binNames.push_back(getNoteName(i, 0)); Chris@294: } Chris@294: } Chris@294: d.hasKnownExtents = false; Chris@294: d.isQuantized = false; Chris@294: d.sampleType = OutputDescriptor::FixedSampleRate; Chris@294: d.sampleRate = m_colsPerSec; Chris@294: d.hasDuration = false; Chris@294: m_pitchOutputNo = list.size(); Chris@294: list.push_back(d); Chris@294: Chris@309: d.identifier = "chroma"; Chris@309: d.name = "Pitch chroma distribution"; Chris@309: d.description = "Pitch chroma distribution formed by wrapping the un-thresholded pitch activation distribution into a single octave of semitone bins."; Chris@309: d.unit = ""; Chris@309: d.hasFixedBinCount = true; Chris@309: d.binCount = 12; Chris@309: d.binNames.clear(); Chris@309: if (m_cq) { Chris@309: for (int i = 0; i < 12; ++i) { Chris@320: d.binNames.push_back(getChromaName(i)); Chris@309: } Chris@309: } Chris@309: d.hasKnownExtents = false; Chris@309: d.isQuantized = false; Chris@309: d.sampleType = OutputDescriptor::FixedSampleRate; Chris@309: d.sampleRate = m_colsPerSec; Chris@309: d.hasDuration = false; Chris@309: m_chromaOutputNo = list.size(); Chris@309: list.push_back(d); Chris@309: Chris@302: d.identifier = "templates"; Chris@302: d.name = "Templates"; Chris@302: d.description = "Constant-Q spectral templates for the selected instrument pack."; Chris@302: d.unit = ""; Chris@302: d.hasFixedBinCount = true; Chris@302: d.binCount = getPack(0).templateHeight; Chris@302: d.binNames.clear(); Chris@302: if (m_cq) { Chris@302: char name[50]; Chris@302: for (int i = 0; i < getPack(0).templateHeight; ++i) { Chris@302: // We have a 600-bin (10 oct 60-bin CQ) of which the Chris@302: // lowest-frequency 55 bins have been dropped, for a Chris@302: // 545-bin template. The native CQ bins go high->low Chris@302: // frequency though, so these are still the first 545 bins Chris@302: // as reported by getBinFrequency, though in reverse order Chris@302: float freq = m_cq->getBinFrequency Chris@302: (getPack(0).templateHeight - i - 1); Chris@302: sprintf(name, "%.1f Hz", freq); Chris@302: d.binNames.push_back(name); Chris@302: } Chris@302: } Chris@302: d.hasKnownExtents = false; Chris@302: d.isQuantized = false; Chris@302: d.sampleType = OutputDescriptor::FixedSampleRate; Chris@302: d.sampleRate = m_colsPerSec; Chris@302: d.hasDuration = false; Chris@302: m_templateOutputNo = list.size(); Chris@302: list.push_back(d); Chris@302: Chris@31: return list; Chris@31: } Chris@31: Chris@38: std::string Chris@320: Silvet::getChromaName(int pitch) const Chris@38: { Chris@38: static const char *names[] = { Chris@38: "A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#" Chris@38: }; Chris@38: Chris@309: return names[pitch]; Chris@309: } Chris@309: Chris@309: std::string Chris@336: Silvet::getNoteName(int note, int shift) const Chris@309: { Chris@320: string n = getChromaName(note % 12); Chris@38: Chris@175: int oct = (note + 9) / 12; Chris@38: Chris@175: char buf[30]; Chris@175: Chris@175: float pshift = 0.f; Chris@336: int shiftCount = getShiftCount(); Chris@175: if (shiftCount > 1) { Chris@320: // see getNoteFrequency below Chris@175: pshift = Chris@175: float((shiftCount - shift) - int(shiftCount / 2) - 1) / shiftCount; Chris@175: } Chris@175: Chris@175: if (pshift > 0.f) { Chris@309: sprintf(buf, "%s%d+%dc", n.c_str(), oct, int(round(pshift * 100))); Chris@175: } else if (pshift < 0.f) { Chris@309: sprintf(buf, "%s%d-%dc", n.c_str(), oct, int(round((-pshift) * 100))); Chris@175: } else { Chris@309: sprintf(buf, "%s%d", n.c_str(), oct); Chris@175: } Chris@38: Chris@38: return buf; Chris@38: } Chris@38: Chris@41: float Chris@336: Silvet::getNoteFrequency(int note, int shift) const Chris@41: { Chris@169: // Convert shift number to a pitch shift. The given shift number Chris@169: // is an offset into the template array, which starts with some Chris@169: // zeros, followed by the template, then some trailing zeros. Chris@169: // Chris@169: // Example: if we have templateMaxShift == 2 and thus shiftCount Chris@169: // == 5, then the number will be in the range 0-4 and the template Chris@169: // will have 2 zeros at either end. Thus number 2 represents the Chris@169: // template "as recorded", for a pitch shift of 0; smaller indices Chris@169: // represent moving the template *up* in pitch (by introducing Chris@169: // zeros at the start, which is the low-frequency end), for a Chris@169: // positive pitch shift; and higher values represent moving it Chris@169: // down in pitch, for a negative pitch shift. Chris@169: Chris@175: float pshift = 0.f; Chris@336: int shiftCount = getShiftCount(); Chris@175: if (shiftCount > 1) { Chris@175: pshift = Chris@175: float((shiftCount - shift) - int(shiftCount / 2) - 1) / shiftCount; Chris@175: } Chris@169: Chris@301: float freq = float(27.5 * pow(2.0, (note + pshift) / 12.0)); Chris@301: Chris@303: // cerr << "note = " << note << ", shift = " << shift << ", shiftCount = " Chris@303: // << shiftCount << ", obtained freq = " << freq << endl; Chris@301: Chris@301: return freq; Chris@41: } Chris@41: Chris@31: bool Chris@31: Silvet::initialise(size_t channels, size_t stepSize, size_t blockSize) Chris@31: { Chris@272: if (m_inputSampleRate < minInputSampleRate || Chris@272: m_inputSampleRate > maxInputSampleRate) { Chris@272: cerr << "Silvet::initialise: Unsupported input sample rate " Chris@272: << m_inputSampleRate << " (supported min " << minInputSampleRate Chris@272: << ", max " << maxInputSampleRate << ")" << endl; Chris@272: return false; Chris@272: } Chris@272: Chris@31: if (channels < getMinChannelCount() || Chris@272: channels > getMaxChannelCount()) { Chris@272: cerr << "Silvet::initialise: Unsupported channel count " << channels Chris@272: << " (supported min " << getMinChannelCount() << ", max " Chris@272: << getMaxChannelCount() << ")" << endl; Chris@272: return false; Chris@272: } Chris@31: Chris@31: if (stepSize != blockSize) { Chris@31: cerr << "Silvet::initialise: Step size must be the same as block size (" Chris@31: << stepSize << " != " << blockSize << ")" << endl; Chris@31: return false; Chris@31: } Chris@31: Chris@31: m_blockSize = blockSize; Chris@31: Chris@31: reset(); Chris@31: Chris@31: return true; Chris@31: } Chris@31: Chris@31: void Chris@31: Silvet::reset() Chris@31: { Chris@31: delete m_resampler; Chris@246: delete m_flattener; Chris@31: delete m_cq; Chris@31: Chris@31: if (m_inputSampleRate != processingSampleRate) { Chris@31: m_resampler = new Resampler(m_inputSampleRate, processingSampleRate); Chris@31: } else { Chris@31: m_resampler = 0; Chris@31: } Chris@31: Chris@246: m_flattener = new FlattenDynamics(m_inputSampleRate); // before resampling Chris@246: m_flattener->reset(); Chris@246: Chris@301: // this happens to be processingSampleRate / 3, and is the top Chris@301: // freq used for the EM templates: Chris@301: double maxFreq = 14700; Chris@301: Chris@301: if (m_mode == LiveMode) { Chris@301: // We only have 12 bpo rather than 60, so we need the top bin Chris@301: // to be the middle one of the top 5, i.e. 2/5 of a semitone Chris@301: // lower than 14700 Chris@301: maxFreq *= powf(2.0, -1.0 / 30.0); Chris@301: } Chris@301: Chris@173: double minFreq = 27.5; Chris@173: Chris@341: if (m_mode == LiveMode) { Chris@173: // We don't actually return any notes from the bottom octave, Chris@173: // so we can just pad with zeros Chris@173: minFreq *= 2; Chris@173: } Chris@173: Chris@298: int bpo = 12 * Chris@298: (m_mode == LiveMode ? binsPerSemitoneLive : binsPerSemitoneNormal); Chris@301: Chris@154: CQParameters params(processingSampleRate, Chris@173: minFreq, Chris@303: maxFreq, Chris@298: bpo); Chris@154: Chris@325: params.q = 0.8; Chris@325: params.atomHopFactor = (m_mode == LiveMode ? 1.0 : 0.3); Chris@154: params.threshold = 0.0005; Chris@317: params.decimator = Chris@317: (m_mode == LiveMode ? Chris@317: CQParameters::FasterDecimator : CQParameters::BetterDecimator); Chris@172: params.window = CQParameters::Hann; Chris@154: Chris@154: m_cq = new CQSpectrogram(params, CQSpectrogram::InterpolateLinear); Chris@31: Chris@303: // cerr << "CQ bins = " << m_cq->getTotalBins() << endl; Chris@303: // cerr << "CQ min freq = " << m_cq->getMinFrequency() << " (and for confirmation, freq of bin 0 = " << m_cq->getBinFrequency(0) << ")" << endl; Chris@297: Chris@341: m_colsPerSec = 50; Chris@165: Chris@41: for (int i = 0; i < (int)m_postFilter.size(); ++i) { Chris@41: delete m_postFilter[i]; Chris@41: } Chris@41: m_postFilter.clear(); Chris@303: int postFilterLength = 3; Chris@298: for (int i = 0; i < getPack(0).templateNoteCount; ++i) { Chris@303: m_postFilter.push_back(new MedianFilter(postFilterLength)); Chris@41: } Chris@41: m_pianoRoll.clear(); Chris@246: m_inputGains.clear(); Chris@32: m_columnCount = 0; Chris@272: m_resampledCount = 0; Chris@40: m_startTime = RealTime::zeroTime; Chris@313: m_haveStartTime = false; Chris@31: } Chris@31: Chris@31: Silvet::FeatureSet Chris@31: Silvet::process(const float *const *inputBuffers, Vamp::RealTime timestamp) Chris@31: { Chris@302: FeatureSet fs; Chris@302: Chris@313: if (!m_haveStartTime) { Chris@314: Chris@40: m_startTime = timestamp; Chris@313: m_haveStartTime = true; Chris@314: Chris@302: insertTemplateFeatures(fs); Chris@40: } Chris@246: Chris@246: vector flattened(m_blockSize); Chris@246: float gain = 1.f; Chris@246: m_flattener->connectInputPort Chris@246: (FlattenDynamics::AudioInputPort, inputBuffers[0]); Chris@246: m_flattener->connectOutputPort Chris@246: (FlattenDynamics::AudioOutputPort, &flattened[0]); Chris@246: m_flattener->connectOutputPort Chris@246: (FlattenDynamics::GainOutputPort, &gain); Chris@246: m_flattener->process(m_blockSize); Chris@246: Chris@252: m_inputGains[timestamp] = gain; Chris@40: Chris@31: vector data; Chris@40: for (int i = 0; i < m_blockSize; ++i) { Chris@246: double d = flattened[i]; Chris@235: data.push_back(d); Chris@40: } Chris@31: Chris@31: if (m_resampler) { Chris@272: Chris@31: data = m_resampler->process(data.data(), data.size()); Chris@272: Chris@272: int hadCount = m_resampledCount; Chris@272: m_resampledCount += data.size(); Chris@272: Chris@272: int resamplerLatency = m_resampler->getLatency(); Chris@272: Chris@272: if (hadCount < resamplerLatency) { Chris@272: int stillToDrop = resamplerLatency - hadCount; Chris@272: if (stillToDrop >= int(data.size())) { Chris@302: return fs; Chris@272: } else { Chris@272: data = vector(data.begin() + stillToDrop, data.end()); Chris@272: } Chris@272: } Chris@31: } Chris@272: Chris@32: Grid cqout = m_cq->process(data); Chris@302: transcribe(cqout, fs); Chris@51: return fs; Chris@34: } Chris@34: Chris@34: Silvet::FeatureSet Chris@34: Silvet::getRemainingFeatures() Chris@34: { Chris@145: Grid cqout = m_cq->getRemainingOutput(); Chris@302: FeatureSet fs; Chris@336: Chris@302: if (m_columnCount == 0) { Chris@302: // process() was never called, but we still want these Chris@302: insertTemplateFeatures(fs); Chris@302: } else { Chris@336: Chris@336: // Complete the transcription Chris@336: Chris@302: transcribe(cqout, fs); Chris@336: Chris@336: // And make sure any extant playing notes are finished and returned Chris@336: Chris@336: m_pianoRoll.push_back({}); Chris@336: Chris@336: auto events = noteTrack(); Chris@336: Chris@336: for (const auto &f : events.notes) { Chris@336: fs[m_notesOutputNo].push_back(f); Chris@336: } Chris@336: Chris@336: for (const auto &f : events.onsets) { Chris@336: fs[m_onsetsOutputNo].push_back(f); Chris@336: } Chris@336: Chris@336: for (const auto &f : events.onOffsets) { Chris@336: fs[m_onOffsetsOutputNo].push_back(f); Chris@336: } Chris@302: } Chris@336: Chris@51: return fs; Chris@34: } Chris@34: Chris@302: void Chris@302: Silvet::insertTemplateFeatures(FeatureSet &fs) Chris@302: { Chris@302: const InstrumentPack &pack = getPack(m_instrument); Chris@302: for (int i = 0; i < int(pack.templates.size()) * pack.templateNoteCount; ++i) { Chris@302: RealTime timestamp = RealTime::fromSeconds(double(i) / m_colsPerSec); Chris@302: Feature f; Chris@302: char buffer[50]; Chris@302: sprintf(buffer, "Note %d", i + 1); Chris@302: f.label = buffer; Chris@302: f.hasTimestamp = true; Chris@302: f.timestamp = timestamp; Chris@302: f.values = pack.templates[i / pack.templateNoteCount] Chris@302: .data[i % pack.templateNoteCount]; Chris@302: fs[m_templateOutputNo].push_back(f); Chris@302: } Chris@302: } Chris@302: Chris@336: int Chris@336: Silvet::getShiftCount() const Chris@336: { Chris@336: bool wantShifts = (m_mode == HighQualityMode) && m_fineTuning; Chris@336: int shiftCount = 1; Chris@336: if (wantShifts) { Chris@336: const InstrumentPack &pack(getPack(m_instrument)); Chris@336: shiftCount = pack.templateMaxShift * 2 + 1; Chris@336: } Chris@336: return shiftCount; Chris@336: } Chris@336: Chris@302: void Chris@302: Silvet::transcribe(const Grid &cqout, Silvet::FeatureSet &fs) Chris@34: { Chris@32: Grid filtered = preProcess(cqout); Chris@31: Chris@302: if (filtered.empty()) return; Chris@170: Chris@298: const InstrumentPack &pack(getPack(m_instrument)); Chris@104: Chris@325: int width = filtered.size(); Chris@325: Chris@325: double silenceThreshold = 0.01; Chris@325: Chris@325: for (int i = 0; i < width; ++i) { Chris@325: Chris@325: RealTime timestamp = getColumnTimestamp(m_pianoRoll.size() - 1 + i); Chris@325: float inputGain = getInputGainAt(timestamp); Chris@325: Chris@178: Feature f; Chris@325: double rms = 0.0; Chris@325: Chris@178: for (int j = 0; j < pack.templateHeight; ++j) { Chris@325: double v = filtered[i][j]; Chris@325: rms += v * v; Chris@325: f.values.push_back(float(v)); Chris@178: } Chris@325: Chris@325: rms = sqrt(rms / pack.templateHeight); Chris@325: if (rms / inputGain < silenceThreshold) { Chris@325: filtered[i].clear(); Chris@325: } Chris@325: Chris@178: fs[m_fcqOutputNo].push_back(f); Chris@178: } Chris@325: Chris@311: Grid localPitches(width); Chris@170: Chris@336: int shiftCount = getShiftCount(); Chris@336: bool wantShifts = (shiftCount > 1); Chris@170: Chris@170: vector > localBestShifts; Chris@170: if (wantShifts) { Chris@311: localBestShifts = vector >(width); Chris@170: } Chris@170: Chris@356: int emThreadCount = 1; Chris@356: Chris@356: #if (defined(MAX_EM_THREADS) && (MAX_EM_THREADS > 1)) Chris@356: emThreadCount = MAX_EM_THREADS; Chris@356: Chris@352: if (emThreadCount > int(std::thread::hardware_concurrency())) { Chris@352: emThreadCount = std::thread::hardware_concurrency(); Chris@352: } Chris@317: if (m_mode == LiveMode && pack.templates.size() == 1) { Chris@317: // The EM step is probably not slow enough to merit it Chris@317: emThreadCount = 1; Chris@317: } Chris@317: Chris@317: if (emThreadCount > 1) { Chris@317: for (int i = 0; i < width; ) { Chris@317: typedef future, vector>> EMFuture; Chris@317: vector results; Chris@317: for (int j = 0; j < emThreadCount && i + j < width; ++j) { Chris@352: const vector &column = filtered.at(i + j); Chris@317: results.push_back Chris@317: (async(std::launch::async, Chris@352: [&]() { return applyEM(pack, column); })); Chris@317: } Chris@317: for (int j = 0; j < emThreadCount && i + j < width; ++j) { Chris@317: auto out = results[j].get(); Chris@317: localPitches[i+j] = out.first; Chris@317: if (wantShifts) localBestShifts[i+j] = out.second; Chris@317: } Chris@317: i += emThreadCount; Chris@312: } Chris@123: } Chris@312: #endif Chris@317: Chris@317: if (emThreadCount == 1) { Chris@317: for (int i = 0; i < width; ++i) { Chris@336: auto out = applyEM(pack, filtered.at(i)); Chris@317: localPitches[i] = out.first; Chris@317: if (wantShifts) localBestShifts[i] = out.second; Chris@317: } Chris@317: } Chris@305: Chris@166: for (int i = 0; i < width; ++i) { Chris@37: Chris@321: vector filtered; Chris@321: Chris@321: for (int j = 0; j < pack.templateNoteCount; ++j) { Chris@321: m_postFilter[j]->push(localPitches[i][j]); Chris@321: filtered.push_back(m_postFilter[j]->get()); Chris@321: } Chris@294: Chris@309: RealTime timestamp = getColumnTimestamp(m_pianoRoll.size() - 1); Chris@309: float inputGain = getInputGainAt(timestamp); Chris@309: Chris@294: Feature f; Chris@294: for (int j = 0; j < (int)filtered.size(); ++j) { Chris@309: float v = filtered[j]; Chris@294: if (v < pack.levelThreshold) v = 0.f; Chris@309: f.values.push_back(v / inputGain); Chris@294: } Chris@294: fs[m_pitchOutputNo].push_back(f); Chris@309: Chris@309: f.values.clear(); Chris@309: f.values.resize(12); Chris@309: for (int j = 0; j < (int)filtered.size(); ++j) { Chris@309: f.values[j % 12] += filtered[j] / inputGain; Chris@309: } Chris@309: fs[m_chromaOutputNo].push_back(f); Chris@38: Chris@321: // This pushes the up-to-max-polyphony activation column to Chris@321: // m_pianoRoll Chris@336: postProcess(filtered, localBestShifts[i]); Chris@321: Chris@336: auto events = noteTrack(); Chris@319: Chris@336: for (const auto &f : events.notes) { Chris@336: fs[m_notesOutputNo].push_back(f); Chris@40: } Chris@319: Chris@336: for (const auto &f : events.onsets) { Chris@336: fs[m_onsetsOutputNo].push_back(f); Chris@336: } Chris@336: Chris@336: for (const auto &f : events.onOffsets) { Chris@336: fs[m_onOffsetsOutputNo].push_back(f); Chris@319: } Chris@34: } Chris@31: } Chris@31: Chris@311: pair, vector > Chris@311: Silvet::applyEM(const InstrumentPack &pack, Chris@336: const vector &column) Chris@311: { Chris@311: double columnThreshold = 1e-5; Chris@311: Chris@314: if (m_mode == LiveMode) { Chris@325: columnThreshold /= 15; Chris@314: } Chris@314: Chris@311: vector pitches(pack.templateNoteCount, 0.0); Chris@311: vector bestShifts; Chris@325: Chris@325: if (column.empty()) return { pitches, bestShifts }; Chris@311: Chris@311: double sum = 0.0; Chris@311: for (int j = 0; j < pack.templateHeight; ++j) { Chris@311: sum += column.at(j); Chris@311: } Chris@311: if (sum < columnThreshold) return { pitches, bestShifts }; Chris@311: Chris@314: EM em(&pack, m_mode == HighQualityMode); Chris@311: Chris@311: em.setPitchSparsity(pack.pitchSparsity); Chris@311: em.setSourceSparsity(pack.sourceSparsity); Chris@311: Chris@314: int iterations = (m_mode == HighQualityMode ? 20 : 10); Chris@311: Chris@311: for (int j = 0; j < iterations; ++j) { Chris@311: em.iterate(column.data()); Chris@311: } Chris@311: Chris@311: const float *pitchDist = em.getPitchDistribution(); Chris@311: const float *const *shiftDist = em.getShifts(); Chris@311: Chris@336: int shiftCount = getShiftCount(); Chris@311: Chris@311: for (int j = 0; j < pack.templateNoteCount; ++j) { Chris@311: Chris@311: pitches[j] = pitchDist[j] * sum; Chris@311: Chris@311: int bestShift = 0; Chris@311: float bestShiftValue = 0.0; Chris@336: if (shiftCount > 1) { Chris@311: for (int k = 0; k < shiftCount; ++k) { Chris@311: float value = shiftDist[k][j]; Chris@311: if (k == 0 || value > bestShiftValue) { Chris@311: bestShiftValue = value; Chris@311: bestShift = k; Chris@311: } Chris@311: } Chris@311: bestShifts.push_back(bestShift); Chris@311: } Chris@311: } Chris@311: Chris@311: return { pitches, bestShifts }; Chris@311: } Chris@311: Chris@32: Silvet::Grid Chris@32: Silvet::preProcess(const Grid &in) Chris@32: { Chris@32: int width = in.size(); Chris@32: Chris@165: int spacing = processingSampleRate / m_colsPerSec; Chris@32: Chris@165: // need to be careful that col spacing is an integer number of samples! Chris@165: assert(spacing * m_colsPerSec == processingSampleRate); Chris@32: Chris@32: Grid out; Chris@32: Chris@58: // We count the CQ latency in terms of processing hops, but Chris@58: // actually it probably isn't an exact number of hops so this Chris@58: // isn't quite accurate. But the small constant offset is Chris@165: // practically irrelevant compared to the jitter from the frame Chris@165: // size we reduce to in a moment Chris@33: int latentColumns = m_cq->getLatency() / m_cq->getColumnHop(); Chris@33: Chris@298: const InstrumentPack &pack(getPack(m_instrument)); Chris@176: Chris@32: for (int i = 0; i < width; ++i) { Chris@32: Chris@33: if (m_columnCount < latentColumns) { Chris@33: ++m_columnCount; Chris@33: continue; Chris@33: } Chris@33: Chris@32: int prevSampleNo = (m_columnCount - 1) * m_cq->getColumnHop(); Chris@32: int sampleNo = m_columnCount * m_cq->getColumnHop(); Chris@32: Chris@32: bool select = (sampleNo / spacing != prevSampleNo / spacing); Chris@32: Chris@32: if (select) { Chris@32: vector inCol = in[i]; Chris@176: vector outCol(pack.templateHeight); Chris@32: Chris@178: // In HQ mode, the CQ returns 600 bins and we ignore the Chris@298: // lowest 55 of them (assuming binsPerSemitone == 5). Chris@178: // Chris@341: // In live mode the CQ is an octave shorter, returning 540 Chris@341: // bins or equivalent, so we instead pad them with an Chris@341: // additional 5 or equivalent zeros. Chris@178: // Chris@178: // We also need to reverse the column as we go, since the Chris@178: // raw CQ has the high frequencies first and we need it Chris@178: // the other way around. Chris@32: Chris@298: int bps = (m_mode == LiveMode ? Chris@298: binsPerSemitoneLive : binsPerSemitoneNormal); Chris@298: Chris@297: if (m_mode == HighQualityMode) { Chris@178: for (int j = 0; j < pack.templateHeight; ++j) { Chris@298: int ix = inCol.size() - j - (11 * bps); Chris@178: outCol[j] = inCol[ix]; Chris@178: } Chris@178: } else { Chris@298: for (int j = 0; j < bps; ++j) { Chris@178: outCol[j] = 0.0; Chris@178: } Chris@298: for (int j = bps; j < pack.templateHeight; ++j) { Chris@298: int ix = inCol.size() - j + (bps-1); Chris@178: outCol[j] = inCol[ix]; Chris@178: } Chris@46: } Chris@32: Chris@46: vector noiseLevel1 = Chris@298: MedianFilter::filter(8 * bps, outCol); Chris@176: for (int j = 0; j < pack.templateHeight; ++j) { Chris@46: noiseLevel1[j] = std::min(outCol[j], noiseLevel1[j]); Chris@46: } Chris@32: Chris@46: vector noiseLevel2 = Chris@298: MedianFilter::filter(8 * bps, noiseLevel1); Chris@176: for (int j = 0; j < pack.templateHeight; ++j) { Chris@46: outCol[j] = std::max(outCol[j] - noiseLevel2[j], 0.0); Chris@32: } Chris@32: Chris@165: out.push_back(outCol); Chris@32: } Chris@32: Chris@32: ++m_columnCount; Chris@32: } Chris@32: Chris@32: return out; Chris@32: } Chris@32: Chris@321: void Chris@170: Silvet::postProcess(const vector &pitches, Chris@336: const vector &bestShifts) Chris@166: { Chris@298: const InstrumentPack &pack(getPack(m_instrument)); Chris@176: Chris@41: // Threshold for level and reduce number of candidate pitches Chris@41: Chris@41: typedef std::multimap ValueIndexMap; Chris@41: Chris@41: ValueIndexMap strengths; Chris@166: Chris@176: for (int j = 0; j < pack.templateNoteCount; ++j) { Chris@321: Chris@321: double strength = pitches[j]; Chris@183: if (strength < pack.levelThreshold) continue; Chris@321: Chris@321: // In live mode with only a 12-bpo CQ, we are very likely to Chris@321: // get clusters of two or three high scores at a time for Chris@321: // neighbouring semitones. Eliminate these by picking only the Chris@325: // peaks (except that we never eliminate a note that has Chris@325: // already been established as currently playing). This means Chris@325: // we can't recognise actual semitone chords if they ever Chris@325: // appear, but it's not as if live mode is good enough for Chris@325: // that to be a big deal anyway. Chris@321: if (m_mode == LiveMode) { Chris@325: if (m_current.find(j) == m_current.end() && Chris@325: (j == 0 || Chris@325: j + 1 == pack.templateNoteCount || Chris@325: pitches[j] < pitches[j-1] || Chris@325: pitches[j] < pitches[j+1])) { Chris@325: // not a peak or a currently-playing note: skip it Chris@321: continue; Chris@321: } Chris@321: } Chris@323: Chris@168: strengths.insert(ValueIndexMap::value_type(strength, j)); Chris@168: } Chris@166: Chris@168: ValueIndexMap::const_iterator si = strengths.end(); Chris@167: Chris@168: map active; Chris@168: map activeShifts; Chris@168: Chris@336: int shiftCount = getShiftCount(); Chris@336: Chris@183: while (int(active.size()) < pack.maxPolyphony && si != strengths.begin()) { Chris@168: Chris@168: --si; Chris@168: Chris@168: double strength = si->first; Chris@168: int j = si->second; Chris@168: Chris@168: active[j] = strength; Chris@168: Chris@336: if (shiftCount > 1) { Chris@364: if (!bestShifts.empty()) { Chris@364: activeShifts[j] = bestShifts[j]; Chris@364: } else { Chris@364: // can happen if column was below threshold Chris@364: activeShifts[j] = 0; Chris@364: } Chris@167: } Chris@41: } Chris@41: Chris@168: m_pianoRoll.push_back(active); Chris@170: Chris@336: if (shiftCount > 1) { Chris@168: m_pianoRollShifts.push_back(activeShifts); Chris@41: } Chris@294: Chris@321: return; Chris@166: } Chris@166: Chris@336: Silvet::FeatureChunk Chris@336: Silvet::noteTrack() Chris@166: { Chris@41: // Minimum duration pruning, and conversion to notes. We can only Chris@41: // report notes that have just ended (i.e. that are absent in the Chris@168: // latest active set but present in the prior set in the piano Chris@41: // roll) -- any notes that ended earlier will have been reported Chris@41: // already, and if they haven't ended, we don't know their Chris@41: // duration. Chris@41: Chris@168: int width = m_pianoRoll.size() - 1; Chris@168: Chris@168: const map &active = m_pianoRoll[width]; Chris@41: Chris@165: double columnDuration = 1.0 / m_colsPerSec; Chris@165: Chris@165: // only keep notes >= 100ms or thereabouts Chris@323: double durationThrSec = 0.1; Chris@323: int durationThreshold = floor(durationThrSec / columnDuration); // in cols Chris@165: if (durationThreshold < 1) durationThreshold = 1; Chris@41: Chris@336: FeatureList noteFeatures, onsetFeatures, onOffsetFeatures; Chris@41: Chris@41: if (width < durationThreshold + 1) { Chris@336: return { noteFeatures, onsetFeatures, onOffsetFeatures }; Chris@41: } Chris@357: Chris@357: // Make a copy of the latest column. We need a copy because it is Chris@357: // possible we may erase from the "live" column within the loop. Chris@357: map latest = m_pianoRoll[width-1]; Chris@41: Chris@357: for (const auto &ni: latest) { Chris@41: Chris@357: int note = ni.first; Chris@41: Chris@41: int end = width; Chris@41: int start = end-1; Chris@41: Chris@41: while (m_pianoRoll[start].find(note) != m_pianoRoll[start].end()) { Chris@41: --start; Chris@41: } Chris@41: ++start; Chris@41: Chris@319: int duration = end - start; Chris@319: Chris@319: if (duration < durationThreshold) { Chris@41: continue; Chris@41: } Chris@41: Chris@319: if (duration == durationThreshold) { Chris@325: m_current.insert(note); Chris@336: emitOnset(start, note, onsetFeatures); Chris@336: emitOnset(start, note, onOffsetFeatures); Chris@319: } Chris@319: Chris@319: if (active.find(note) == active.end()) { Chris@319: // the note was playing but just ended Chris@325: m_current.erase(note); Chris@343: emitNoteAndOffset(start, end, note, noteFeatures, onOffsetFeatures); Chris@334: } else { // still playing Chris@334: // repeated note detection: if level is greater than this Chris@334: // multiple of its previous value, then we end the note and Chris@334: // restart it with the same pitch Chris@334: double restartFactor = 1.5; Chris@334: if (duration >= durationThreshold * 2 && Chris@334: (active.find(note)->second > Chris@334: restartFactor * m_pianoRoll[width-1][note])) { Chris@334: m_current.erase(note); Chris@343: emitNoteAndOffset(start, end-1, note, noteFeatures, onOffsetFeatures); Chris@334: // and remove this so that we start counting the new Chris@357: // note's duration from the current position. (This Chris@357: // erase is why we needed to copy this column at the Chris@357: // top of the loop.) Chris@334: m_pianoRoll[width-1].erase(note); Chris@334: } Chris@319: } Chris@41: } Chris@41: Chris@62: // cerr << "returning " << noteFeatures.size() << " complete note(s) " << endl; Chris@41: Chris@336: return { noteFeatures, onsetFeatures, onOffsetFeatures }; Chris@41: } Chris@41: Chris@169: void Chris@343: Silvet::emitNoteAndOffset(int start, int end, int note, Chris@343: FeatureList ¬eFeatures, Chris@343: FeatureList &onOffsetFeatures) Chris@169: { Chris@343: // Emit the complete note-event feature, and its offset. We have Chris@343: // already emitted the note onset when it started -- that process Chris@343: // is separated out in order to get a faster response during live Chris@343: // tracking. However, if the note shift changes within the note Chris@343: // (which can happen only if we have fine-tuning switched on), we Chris@343: // emit an offset and then a new onset with the new shift. Chris@343: Chris@169: int partStart = start; Chris@169: int partShift = 0; Chris@320: double partStrength = 0; Chris@169: Chris@343: // NB this *must* be less than durationThreshold above Chris@252: int partThreshold = floor(0.05 * m_colsPerSec); Chris@169: Chris@169: for (int i = start; i != end; ++i) { Chris@169: Chris@169: double strength = m_pianoRoll[i][note]; Chris@169: Chris@169: int shift = 0; Chris@169: Chris@336: if (getShiftCount() > 1) { Chris@169: Chris@169: shift = m_pianoRollShifts[i][note]; Chris@169: Chris@169: if (i == partStart) { Chris@169: partShift = shift; Chris@169: } Chris@169: Chris@169: if (i > partStart + partThreshold && shift != partShift) { Chris@169: Chris@169: // pitch has changed, emit an intermediate note Chris@252: noteFeatures.push_back(makeNoteFeature(partStart, Chris@252: i, Chris@252: note, Chris@252: partShift, Chris@320: partStrength)); Chris@343: Chris@343: onOffsetFeatures.push_back(makeOffsetFeature(i, Chris@343: note, Chris@343: partShift)); Chris@343: Chris@169: partStart = i; Chris@169: partShift = shift; Chris@343: Chris@343: onOffsetFeatures.push_back(makeOnsetFeature(i, Chris@343: note, Chris@343: partShift, Chris@343: partStrength)); Chris@343: Chris@320: partStrength = 0; Chris@169: } Chris@169: } Chris@169: Chris@320: if (strength > partStrength) { Chris@320: partStrength = strength; Chris@169: } Chris@169: } Chris@169: Chris@169: if (end >= partStart + partThreshold) { Chris@343: Chris@252: noteFeatures.push_back(makeNoteFeature(partStart, Chris@252: end, Chris@252: note, Chris@252: partShift, Chris@320: partStrength)); Chris@343: Chris@343: onOffsetFeatures.push_back(makeOffsetFeature(end, Chris@343: note, Chris@343: partShift)); Chris@349: Chris@349: } else if (partStart > start) { Chris@349: Chris@349: // we have emitted an onset for this, so must add an offset Chris@349: onOffsetFeatures.push_back(makeOffsetFeature(end, Chris@349: note, Chris@349: partShift)); Chris@169: } Chris@169: } Chris@252: Chris@319: void Chris@336: Silvet::emitOnset(int start, int note, FeatureList &onOffsetFeatures) Chris@319: { Chris@319: int len = int(m_pianoRoll.size()); Chris@320: Chris@320: double onsetStrength = 0; Chris@319: Chris@319: int shift = 0; Chris@336: if (getShiftCount() > 1) { Chris@319: shift = m_pianoRollShifts[start][note]; Chris@319: } Chris@319: Chris@319: for (int i = start; i < len; ++i) { Chris@319: double strength = m_pianoRoll[i][note]; Chris@320: if (strength > onsetStrength) { Chris@320: onsetStrength = strength; Chris@319: } Chris@319: } Chris@319: Chris@336: if (onsetStrength == 0) return; Chris@336: Chris@336: onOffsetFeatures.push_back(makeOnsetFeature(start, Chris@336: note, Chris@336: shift, Chris@336: onsetStrength)); Chris@336: } Chris@336: Chris@309: RealTime Chris@309: Silvet::getColumnTimestamp(int column) Chris@309: { Chris@309: double columnDuration = 1.0 / m_colsPerSec; Chris@309: int postFilterLatency = int(m_postFilter[0]->getSize() / 2); Chris@309: Chris@309: return m_startTime + RealTime::fromSeconds Chris@309: (columnDuration * (column - postFilterLatency) + 0.02); Chris@309: } Chris@309: Chris@252: Silvet::Feature Chris@252: Silvet::makeNoteFeature(int start, Chris@252: int end, Chris@252: int note, Chris@252: int shift, Chris@320: double strength) Chris@252: { Chris@252: Feature f; Chris@252: Chris@252: f.hasTimestamp = true; Chris@309: f.timestamp = getColumnTimestamp(start); Chris@252: Chris@252: f.hasDuration = true; Chris@309: f.duration = getColumnTimestamp(end) - f.timestamp; Chris@252: Chris@252: f.values.clear(); Chris@336: f.values.push_back(getNoteFrequency(note, shift)); Chris@320: f.values.push_back(getVelocityFor(strength, start)); Chris@252: Chris@336: f.label = getNoteName(note, shift); Chris@252: Chris@252: return f; Chris@252: } Chris@252: Chris@319: Silvet::Feature Chris@319: Silvet::makeOnsetFeature(int start, Chris@319: int note, Chris@319: int shift, Chris@320: double strength) Chris@319: { Chris@319: Feature f; Chris@319: Chris@319: f.hasTimestamp = true; Chris@319: f.timestamp = getColumnTimestamp(start); Chris@319: Chris@319: f.hasDuration = false; Chris@319: Chris@319: f.values.clear(); Chris@336: f.values.push_back(getNoteFrequency(note, shift)); Chris@320: f.values.push_back(getVelocityFor(strength, start)); Chris@319: Chris@336: f.label = getNoteName(note, shift); Chris@336: Chris@336: return f; Chris@336: } Chris@336: Chris@336: Silvet::Feature Chris@336: Silvet::makeOffsetFeature(int col, Chris@336: int note, Chris@336: int shift) Chris@336: { Chris@336: Feature f; Chris@336: Chris@336: f.hasTimestamp = true; Chris@336: f.timestamp = getColumnTimestamp(col); Chris@336: Chris@336: f.hasDuration = false; Chris@336: Chris@336: f.values.clear(); Chris@336: f.values.push_back(getNoteFrequency(note, shift)); Chris@336: f.values.push_back(0); // velocity 0 for offset Chris@336: Chris@336: f.label = getNoteName(note, shift) + " off"; Chris@319: Chris@319: return f; Chris@319: } Chris@319: Chris@320: int Chris@320: Silvet::getVelocityFor(double strength, int column) Chris@320: { Chris@320: RealTime rt = getColumnTimestamp(column + 1); Chris@320: Chris@320: float inputGain = getInputGainAt(rt); Chris@320: Chris@320: double scale = 2.0; Chris@320: if (m_mode == LiveMode) scale = 20.0; Chris@320: Chris@320: double velocity = round((strength * scale) / inputGain); Chris@320: Chris@320: if (velocity > 127.0) velocity = 127.0; Chris@320: if (velocity < 1.0) velocity = 1.0; // assume surpassed 0 threshold already Chris@320: Chris@320: return int(velocity); Chris@320: } Chris@320: Chris@252: float Chris@252: Silvet::getInputGainAt(RealTime t) Chris@252: { Chris@252: map::const_iterator i = m_inputGains.lower_bound(t); Chris@252: Chris@252: if (i == m_inputGains.end()) { Chris@252: if (i != m_inputGains.begin()) { Chris@252: --i; Chris@252: } else { Chris@252: return 1.f; // no data Chris@252: } Chris@252: } Chris@252: Chris@252: // cerr << "gain at time " << t << " = " << i->second << endl; Chris@252: Chris@252: return i->second; Chris@252: } Chris@252: