Mercurial > hg > silvet
diff bqvec/test/Timings.cpp @ 372:af71cbdab621 tip
Update bqvec code
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 10:13:32 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bqvec/test/Timings.cpp Tue Nov 19 10:13:32 2019 +0000 @@ -0,0 +1,323 @@ +/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ + +#include "bqvec/VectorOpsComplex.h" + +#include <iostream> +#include <cstdlib> + +#include <time.h> + +using namespace std; +using namespace breakfastquay; + +//!!! This is nonsense. TODO: Replace it with sense. + +#ifdef _WIN32 +#define drand48() (-1+2*((float)rand())/RAND_MAX) +#endif + +bool +testMultiply() +{ + cerr << "testVectorOps: testing v_multiply complex" << endl; + + const int N = 1024; + //!!! todo: use aligned allocate(), otherwise results will vary randomly + bq_complex_t target[N]; + bq_complex_t src1[N]; + bq_complex_t src2[N]; + + for (int i = 0; i < N; ++i) { + src1[i].re = drand48(); + src1[i].im = drand48(); + src2[i].re = drand48(); + src2[i].im = drand48(); + } + + double mean, first, last, total = 0; + for (int i = 0; i < N; ++i) { + bq_complex_t result; + c_multiply(result, src1[i], src2[i]); + if (i == 0) first = result.re; + if (i == N-1) last = result.im; + total += result.re; + total += result.im; + } + mean = total / (N*2); + cerr << "Naive method: mean = " << mean << ", first = " << first + << ", last = " << last << endl; + + v_multiply_to(target, src1, src2, N); + total = 0; + + for (int i = 0; i < N; ++i) { + if (i == 0) first = target[i].re; + if (i == N-1) last = target[i].im; + total += target[i].re; + total += target[i].im; + } + mean = total / (N*2); + cerr << "v_multiply: mean = " << mean << ", first = " << first + << ", last = " << last << endl; + + int iterations = 50000; +// cerr << "Iterations: " << iterations << endl; + +// cerr << "CLOCKS_PER_SEC = " << CLOCKS_PER_SEC << endl; + float divisor = float(CLOCKS_PER_SEC) / 1000.f; + + clock_t start = clock(); + + for (int j = 0; j < iterations; ++j) { + for (int i = 0; i < N; ++i) { + c_multiply(target[i], src1[i], src2[i]); + } + } + + clock_t end = clock(); + + cerr << "Time for naive method: " << float(end - start)/divisor << endl; + + start = clock(); + + for (int j = 0; j < iterations; ++j) { + v_multiply_to(target, src1, src2, N); + } + + end = clock(); + + cerr << "Time for v_multiply: " << float(end - start)/divisor << endl; + + return true; +} + +bool +testPolarToCart() +{ + cerr << "testVectorOps: testing v_polar_to_cartesian" << endl; + + const int N = 1024; + bq_complex_t target[N]; + bq_complex_element_t mag[N]; + bq_complex_element_t phase[N]; + + for (int i = 0; i < N; ++i) { + mag[i] = drand48(); + phase[i] = (drand48() * M_PI * 2) - M_PI; + } + + double mean, first, last, total = 0; + for (int i = 0; i < N; ++i) { + double real = mag[i] * cos(phase[i]); + double imag = mag[i] * sin(phase[i]); + if (i == 0) first = real; + if (i == N-1) last = imag; + total += real; + total += imag; + } + mean = total / (N*2); + cerr << "Naive method: mean = " << mean << ", first = " << first + << ", last = " << last << endl; + + v_polar_to_cartesian(target, mag, phase, N); + + total = 0; + + for (int i = 0; i < N; ++i) { + if (i == 0) first = target[i].re; + if (i == N-1) last = target[i].im; + total += target[i].re; + total += target[i].im; + } + mean = total / (N*2); + cerr << "v_polar_to_cartesian: mean = " << mean << ", first = " << first + << ", last = " << last << endl; + + int iterations = 10000; +// cerr << "Iterations: " << iterations << endl; + +// cerr << "CLOCKS_PER_SEC = " << CLOCKS_PER_SEC << endl; + float divisor = float(CLOCKS_PER_SEC) / 1000.f; + + clock_t start = clock(); + + for (int j = 0; j < iterations; ++j) { + for (int i = 0; i < N; ++i) { + target[i].re = mag[i] * cos(phase[i]); + target[i].im = mag[i] * sin(phase[i]); + } + } + + clock_t end = clock(); + + cerr << "Time for naive method: " << float(end - start)/divisor << endl; + + start = clock(); + + for (int j = 0; j < iterations; ++j) { + v_polar_to_cartesian(target, mag, phase, N); + } + + end = clock(); + + cerr << "Time for v_polar_to_cartesian: " << float(end - start)/divisor << endl; + + return true; +} + +bool +testPolarToCartInterleaved() +{ + cerr << "testVectorOps: testing v_polar_interleaved_to_cartesian" << endl; + + const int N = 1024; + bq_complex_t target[N]; + bq_complex_element_t source[N*2]; + + for (int i = 0; i < N; ++i) { + source[i*2] = drand48(); + source[i*2+1] = (drand48() * M_PI * 2) - M_PI; + } + + double mean, first, last, total = 0; + for (int i = 0; i < N; ++i) { + double real = source[i*2] * cos(source[i*2+1]); + double imag = source[i*2] * sin(source[i*2+1]); + if (i == 0) first = real; + if (i == N-1) last = imag; + total += real; + total += imag; + } + mean = total / (N*2); + cerr << "Naive method: mean = " << mean << ", first = " << first + << ", last = " << last << endl; + + v_polar_interleaved_to_cartesian(target, source, N); + + total = 0; + + for (int i = 0; i < N; ++i) { + if (i == 0) first = target[i].re; + if (i == N-1) last = target[i].im; + total += target[i].re; + total += target[i].im; + } + mean = total / (N*2); + cerr << "v_polar_interleaved_to_cartesian: mean = " << mean << ", first = " << first + << ", last = " << last << endl; + + int iterations = 10000; +// cerr << "Iterations: " << iterations << endl; + +// cerr << "CLOCKS_PER_SEC = " << CLOCKS_PER_SEC << endl; + float divisor = float(CLOCKS_PER_SEC) / 1000.f; + + clock_t start = clock(); + + for (int j = 0; j < iterations; ++j) { + for (int i = 0; i < N; ++i) { + target[i].re = source[i*2] * cos(source[i*2+1]); + target[i].im = source[i*2] * sin(source[i*2+1]); + } + } + + clock_t end = clock(); + + cerr << "Time for naive method: " << float(end - start)/divisor << endl; + + start = clock(); + + for (int j = 0; j < iterations; ++j) { + v_polar_interleaved_to_cartesian(target, source, N); + } + + end = clock(); + + cerr << "Time for v_polar_interleaved_to_cartesian: " << float(end - start)/divisor << endl; + + return true; +} + +bool +testCartToPolar() +{ + cerr << "testVectorOps: testing v_cartesian_to_polar" << endl; + + const int N = 1024; + bq_complex_t source[N]; + bq_complex_element_t mag[N]; + bq_complex_element_t phase[N]; + + for (int i = 0; i < N; ++i) { + source[i].re = (drand48() * 2.0) - 1.0; + source[i].im = (drand48() * 2.0) - 1.0; + } + + double mean, first, last, total = 0; + for (int i = 0; i < N; ++i) { + double mag = sqrt(source[i].re * source[i].re + source[i].im * source[i].im); + double phase = atan2(source[i].im, source[i].re); + if (i == 0) first = mag; + if (i == N-1) last = phase; + total += mag; + total += phase; + } + mean = total / (N*2); + cerr << "Naive method: mean = " << mean << ", first = " << first + << ", last = " << last << endl; + + v_cartesian_to_polar(mag, phase, source, N); + + total = 0; + + for (int i = 0; i < N; ++i) { + if (i == 0) first = mag[i]; + if (i == N-1) last = phase[i]; + total += mag[i]; + total += phase[i]; + } + mean = total / (N*2); + cerr << "v_cartesian_to_polar: mean = " << mean << ", first = " << first + << ", last = " << last << endl; + + int iterations = 10000; +// cerr << "Iterations: " << iterations << endl; + +// cerr << "CLOCKS_PER_SEC = " << CLOCKS_PER_SEC << endl; + float divisor = float(CLOCKS_PER_SEC) / 1000.f; + + clock_t start = clock(); + + for (int j = 0; j < iterations; ++j) { + for (int i = 0; i < N; ++i) { + mag[i] = sqrt(source[i].re * source[i].re + source[i].im * source[i].im); + phase[i] = atan2(source[i].im, source[i].re); + } + } + + clock_t end = clock(); + + cerr << "Time for naive method: " << float(end - start)/divisor << endl; + + start = clock(); + + for (int j = 0; j < iterations; ++j) { + v_cartesian_to_polar(mag, phase, source, N); + } + + end = clock(); + + cerr << "Time for v_cartesian_to_polar: " << float(end - start)/divisor << endl; + + return true; +} + +int main(int, char **) +{ + if (!testMultiply()) return 1; + if (!testPolarToCart()) return 1; + if (!testPolarToCartInterleaved()) return 1; + if (!testCartToPolar()) return 1; + return 0; +} +