Mercurial > hg > silvet
diff constant-q-cpp/test/TestFFT.cpp @ 366:5d0a2ebb4d17
Bring dependent libraries in to repo
author | Chris Cannam |
---|---|
date | Fri, 24 Jun 2016 14:47:45 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/constant-q-cpp/test/TestFFT.cpp Fri Jun 24 14:47:45 2016 +0100 @@ -0,0 +1,466 @@ +/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ + +#include "dsp/FFT.h" + +#define BOOST_TEST_DYN_LINK +#define BOOST_TEST_MAIN + +#include <boost/test/unit_test.hpp> + +#include <stdexcept> + +BOOST_AUTO_TEST_SUITE(TestFFT) + +#define COMPARE_CONST(a, n) \ + for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ + BOOST_CHECK_SMALL(a[cmp_i] - n, 1e-14); \ + } + +#define COMPARE_ARRAY(a, b) \ + for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ + BOOST_CHECK_SMALL(a[cmp_i] - b[cmp_i], 1e-14); \ + } + +//!!! need at least one test with complex time-domain signal + +BOOST_AUTO_TEST_CASE(forwardArrayBounds) +{ + // initialise bins to something recognisable, so we can tell if + // they haven't been written; and allocate the inputs on the heap + // so that, if running under valgrind, we get warnings about + // overruns + double *in = new double[4]; + in[0] = 1; + in[1] = 1; + in[2] = -1; + in[3] = -1; + double re[] = { 999, 999, 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999, 999, 999 }; + FFT(4).process(false, in, 0, re+1, im+1); + // And check we haven't overrun the arrays + BOOST_CHECK_EQUAL(re[0], 999.0); + BOOST_CHECK_EQUAL(im[0], 999.0); + BOOST_CHECK_EQUAL(re[5], 999.0); + BOOST_CHECK_EQUAL(im[5], 999.0); + delete[] in; +} + +BOOST_AUTO_TEST_CASE(r_forwardArrayBounds) +{ + // initialise bins to something recognisable, so we can tell if + // they haven't been written; and allocate the inputs on the heap + // so that, if running under valgrind, we get warnings about + // overruns + double *in = new double[4]; + in[0] = 1; + in[1] = 1; + in[2] = -1; + in[3] = -1; + double re[] = { 999, 999, 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999, 999, 999 }; + FFTReal(4).forward(in, re+1, im+1); + // And check we haven't overrun the arrays + BOOST_CHECK_EQUAL(re[0], 999.0); + BOOST_CHECK_EQUAL(im[0], 999.0); + BOOST_CHECK_EQUAL(re[5], 999.0); + BOOST_CHECK_EQUAL(im[5], 999.0); + delete[] in; +} + +BOOST_AUTO_TEST_CASE(inverseArrayBounds) +{ + // initialise bins to something recognisable, so we can tell if + // they haven't been written; and allocate the inputs on the heap + // so that, if running under valgrind, we get warnings about + // overruns + double *re = new double[4]; + double *im = new double[4]; + re[0] = 0; + re[1] = 1; + re[2] = 0; + re[3] = 1; + im[0] = 0; + im[1] = -2; + im[2] = 0; + im[3] = 2; + double outre[] = { 999, 999, 999, 999, 999, 999 }; + double outim[] = { 999, 999, 999, 999, 999, 999 }; + FFT(4).process(true, re, im, outre+1, outim+1); + // And check we haven't overrun the arrays + BOOST_CHECK_EQUAL(outre[0], 999.0); + BOOST_CHECK_EQUAL(outim[0], 999.0); + BOOST_CHECK_EQUAL(outre[5], 999.0); + BOOST_CHECK_EQUAL(outim[5], 999.0); + delete[] re; + delete[] im; +} + +BOOST_AUTO_TEST_CASE(r_inverseArrayBounds) +{ + // initialise bins to something recognisable, so we can tell if + // they haven't been written; and allocate the inputs on the heap + // so that, if running under valgrind, we get warnings about + // overruns + double *re = new double[3]; + double *im = new double[3]; + re[0] = 0; + re[1] = 1; + re[2] = 0; + im[0] = 0; + im[1] = -2; + im[2] = 0; + double outre[] = { 999, 999, 999, 999, 999, 999 }; + FFTReal(4).inverse(re, im, outre+1); + // And check we haven't overrun the arrays + BOOST_CHECK_EQUAL(outre[0], 999.0); + BOOST_CHECK_EQUAL(outre[5], 999.0); + delete[] re; + delete[] im; +} + +BOOST_AUTO_TEST_CASE(dc) +{ + // DC-only signal. The DC bin is purely real + double in[] = { 1, 1, 1, 1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, in, 0, re, im); + BOOST_CHECK_EQUAL(re[0], 4.0); + BOOST_CHECK_EQUAL(re[1], 0.0); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_EQUAL(re[3], 0.0); + COMPARE_CONST(im, 0.0); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, in); + COMPARE_CONST(backim, 0.0); +} + +BOOST_AUTO_TEST_CASE(r_dc) +{ + // DC-only signal. The DC bin is purely real + double in[] = { 1, 1, 1, 1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFTReal(4).forward(in, re, im); + BOOST_CHECK_EQUAL(re[0], 4.0); + BOOST_CHECK_EQUAL(re[1], 0.0); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_EQUAL(re[3], 0.0); + COMPARE_CONST(im, 0.0); + double back[4]; + // check conjugates are reconstructed + re[3] = 999; + im[3] = 999; + FFTReal(4).inverse(re, im, back); + COMPARE_ARRAY(back, in); +} + +BOOST_AUTO_TEST_CASE(c_dc) +{ + // DC-only signal. The DC bin is purely real + double rin[] = { 1, 1, 1, 1 }; + double iin[] = { 1, 1, 1, 1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, rin, iin, re, im); + BOOST_CHECK_EQUAL(re[0], 4.0); + BOOST_CHECK_EQUAL(re[1], 0.0); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_EQUAL(re[3], 0.0); + BOOST_CHECK_EQUAL(im[0], 4.0); + BOOST_CHECK_EQUAL(im[1], 0.0); + BOOST_CHECK_EQUAL(im[2], 0.0); + BOOST_CHECK_EQUAL(im[3], 0.0); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, rin); + COMPARE_ARRAY(backim, iin); +} + +BOOST_AUTO_TEST_CASE(sine) +{ + // Sine. Output is purely imaginary + double in[] = { 0, 1, 0, -1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, in, 0, re, im); + COMPARE_CONST(re, 0.0); + BOOST_CHECK_EQUAL(im[0], 0.0); + BOOST_CHECK_EQUAL(im[1], -2.0); + BOOST_CHECK_EQUAL(im[2], 0.0); + BOOST_CHECK_EQUAL(im[3], 2.0); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, in); + COMPARE_CONST(backim, 0.0); +} + +BOOST_AUTO_TEST_CASE(r_sine) +{ + // Sine. Output is purely imaginary + double in[] = { 0, 1, 0, -1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFTReal(4).forward(in, re, im); + COMPARE_CONST(re, 0.0); + BOOST_CHECK_EQUAL(im[0], 0.0); + BOOST_CHECK_EQUAL(im[1], -2.0); + BOOST_CHECK_EQUAL(im[2], 0.0); + BOOST_CHECK_EQUAL(im[3], 2.0); + double back[4]; + // check conjugates are reconstructed + re[3] = 999; + im[3] = 999; + FFTReal(4).inverse(re, im, back); + COMPARE_ARRAY(back, in); +} + +BOOST_AUTO_TEST_CASE(cosine) +{ + // Cosine. Output is purely real + double in[] = { 1, 0, -1, 0 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, in, 0, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_EQUAL(re[1], 2.0); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_EQUAL(re[3], 2.0); + COMPARE_CONST(im, 0.0); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, in); + COMPARE_CONST(backim, 0.0); +} + +BOOST_AUTO_TEST_CASE(r_cosine) +{ + // Cosine. Output is purely real + double in[] = { 1, 0, -1, 0 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFTReal(4).forward(in, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_EQUAL(re[1], 2.0); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_EQUAL(re[3], 2.0); + COMPARE_CONST(im, 0.0); + double back[4]; + // check conjugates are reconstructed + re[3] = 999; + im[3] = 999; + FFTReal(4).inverse(re, im, back); + COMPARE_ARRAY(back, in); +} + +BOOST_AUTO_TEST_CASE(c_cosine) +{ + // Cosine. Output is purely real + double rin[] = { 1, 0, -1, 0 }; + double iin[] = { 1, 0, -1, 0 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, rin, iin, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_EQUAL(re[1], 2.0); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_EQUAL(re[3], 2.0); + BOOST_CHECK_EQUAL(im[0], 0.0); + BOOST_CHECK_EQUAL(im[1], 2.0); + BOOST_CHECK_EQUAL(im[2], 0.0); + BOOST_CHECK_EQUAL(im[3], 2.0); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, rin); + COMPARE_ARRAY(backim, iin); +} + +BOOST_AUTO_TEST_CASE(sineCosine) +{ + // Sine and cosine mixed + double in[] = { 0.5, 1, -0.5, -1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, in, 0, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); + BOOST_CHECK_EQUAL(im[0], 0.0); + BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); + BOOST_CHECK_EQUAL(im[2], 0.0); + BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, in); + COMPARE_CONST(backim, 0.0); +} + +BOOST_AUTO_TEST_CASE(r_sineCosine) +{ + // Sine and cosine mixed + double in[] = { 0.5, 1, -0.5, -1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFTReal(4).forward(in, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); + BOOST_CHECK_EQUAL(im[0], 0.0); + BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); + BOOST_CHECK_EQUAL(im[2], 0.0); + BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); + double back[4]; + // check conjugates are reconstructed + re[3] = 999; + im[3] = 999; + FFTReal(4).inverse(re, im, back); + COMPARE_ARRAY(back, in); +} + +BOOST_AUTO_TEST_CASE(c_sineCosine) +{ + double rin[] = { 1, 0, -1, 0 }; + double iin[] = { 0, 1, 0, -1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, rin, iin, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_EQUAL(re[1], 4.0); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_EQUAL(re[3], 0.0); + COMPARE_CONST(im, 0.0); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, rin); + COMPARE_ARRAY(backim, iin); +} + +BOOST_AUTO_TEST_CASE(nyquist) +{ + double in[] = { 1, -1, 1, -1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, in, 0, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_EQUAL(re[1], 0.0); + BOOST_CHECK_EQUAL(re[2], 4.0); + BOOST_CHECK_EQUAL(re[3], 0.0); + COMPARE_CONST(im, 0.0); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, in); + COMPARE_CONST(backim, 0.0); +} + +BOOST_AUTO_TEST_CASE(r_nyquist) +{ + double in[] = { 1, -1, 1, -1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFTReal(4).forward(in, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_EQUAL(re[1], 0.0); + BOOST_CHECK_EQUAL(re[2], 4.0); + BOOST_CHECK_EQUAL(re[3], 0.0); + COMPARE_CONST(im, 0.0); + double back[4]; + // check conjugates are reconstructed + re[3] = 999; + im[3] = 999; + FFTReal(4).inverse(re, im, back); + COMPARE_ARRAY(back, in); +} + +BOOST_AUTO_TEST_CASE(dirac) +{ + double in[] = { 1, 0, 0, 0 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, in, 0, re, im); + BOOST_CHECK_EQUAL(re[0], 1.0); + BOOST_CHECK_EQUAL(re[1], 1.0); + BOOST_CHECK_EQUAL(re[2], 1.0); + BOOST_CHECK_EQUAL(re[3], 1.0); + COMPARE_CONST(im, 0.0); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, in); + COMPARE_CONST(backim, 0.0); +} + +BOOST_AUTO_TEST_CASE(r_dirac) +{ + double in[] = { 1, 0, 0, 0 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFTReal(4).forward(in, re, im); + BOOST_CHECK_EQUAL(re[0], 1.0); + BOOST_CHECK_EQUAL(re[1], 1.0); + BOOST_CHECK_EQUAL(re[2], 1.0); + BOOST_CHECK_EQUAL(re[3], 1.0); + COMPARE_CONST(im, 0.0); + double back[4]; + // check conjugates are reconstructed + re[3] = 999; + im[3] = 999; + FFTReal(4).inverse(re, im, back); + COMPARE_ARRAY(back, in); +} + +BOOST_AUTO_TEST_CASE(sizes) +{ + // Complex supports any size. A single test with an odd size + // will do here, without getting too much into our expectations + // about supported butterflies etc + + double in[] = { 1, 1, 1 }; + double re[] = { 999, 999, 999 }; + double im[] = { 999, 999, 999 }; + FFT(3).process(false, in, 0, re, im); + BOOST_CHECK_EQUAL(re[0], 3.0); + BOOST_CHECK_EQUAL(re[1], 0.0); + BOOST_CHECK_EQUAL(re[2], 0.0); + COMPARE_CONST(im, 0.0); + double back[3]; + double backim[3]; + FFT(3).process(true, re, im, back, backim); + COMPARE_ARRAY(back, in); + COMPARE_CONST(backim, 0.0); +} + +BOOST_AUTO_TEST_CASE(r_sizes) +{ + // Real supports any even size, but not odd ones + + BOOST_CHECK_THROW(FFTReal r(3), std::invalid_argument); + + double in[] = { 1, 1, 1, 1, 1, 1 }; + double re[] = { 999, 999, 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999, 999, 999 }; + FFTReal(6).forward(in, re, im); + BOOST_CHECK_EQUAL(re[0], 6.0); + BOOST_CHECK_EQUAL(re[1], 0.0); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_EQUAL(re[3], 0.0); + BOOST_CHECK_EQUAL(re[4], 0.0); + BOOST_CHECK_EQUAL(re[5], 0.0); + COMPARE_CONST(im, 0.0); + double back[6]; + FFTReal(6).inverse(re, im, back); + COMPARE_ARRAY(back, in); +} + +BOOST_AUTO_TEST_SUITE_END() +