diff constant-q-cpp/src/CQInverse.cpp @ 366:5d0a2ebb4d17

Bring dependent libraries in to repo
author Chris Cannam
date Fri, 24 Jun 2016 14:47:45 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/constant-q-cpp/src/CQInverse.cpp	Fri Jun 24 14:47:45 2016 +0100
@@ -0,0 +1,419 @@
+/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */
+/*
+    Constant-Q library
+    Copyright (c) 2013-2014 Queen Mary, University of London
+
+    Permission is hereby granted, free of charge, to any person
+    obtaining a copy of this software and associated documentation
+    files (the "Software"), to deal in the Software without
+    restriction, including without limitation the rights to use, copy,
+    modify, merge, publish, distribute, sublicense, and/or sell copies
+    of the Software, and to permit persons to whom the Software is
+    furnished to do so, subject to the following conditions:
+
+    The above copyright notice and this permission notice shall be
+    included in all copies or substantial portions of the Software.
+
+    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+    CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
+    CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+    WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+    Except as contained in this notice, the names of the Centre for
+    Digital Music; Queen Mary, University of London; and Chris Cannam
+    shall not be used in advertising or otherwise to promote the sale,
+    use or other dealings in this Software without prior written
+    authorization.
+*/
+
+#include "CQInverse.h"
+
+#include "dsp/Resampler.h"
+#include "dsp/MathUtilities.h"
+#include "dsp/FFT.h"
+
+#include <algorithm>
+#include <iostream>
+#include <stdexcept>
+
+#include <cmath>
+
+using std::vector;
+using std::cerr;
+using std::endl;
+
+//#define DEBUG_CQ 1
+
+CQInverse::CQInverse(CQParameters params) :
+    m_inparams(params),
+    m_sampleRate(params.sampleRate),
+    m_maxFrequency(params.maxFrequency),
+    m_minFrequency(params.minFrequency),
+    m_binsPerOctave(params.binsPerOctave),
+    m_fft(0)
+{
+    if (m_minFrequency <= 0.0 || m_maxFrequency <= 0.0) {
+        throw std::invalid_argument("Frequency extents must be positive");
+    }
+
+    initialise();
+}
+
+CQInverse::~CQInverse()
+{
+    delete m_fft;
+    for (int i = 0; i < (int)m_upsamplers.size(); ++i) {
+        delete m_upsamplers[i];
+    }
+    delete m_kernel;
+}
+
+double
+CQInverse::getMinFrequency() const
+{
+    return m_p.minFrequency / pow(2.0, m_octaves - 1);
+}
+
+double
+CQInverse::getBinFrequency(double bin) const
+{
+    // our bins are returned in high->low order
+    bin = (getBinsPerOctave() * getOctaves()) - bin - 1;
+    return getMinFrequency() * pow(2, (bin / getBinsPerOctave()));
+}
+
+void
+CQInverse::initialise()
+{
+    m_octaves = int(ceil(log(m_maxFrequency / m_minFrequency) / log(2)));
+
+    if (m_octaves < 1) {
+        m_kernel = 0; // incidentally causing isValid() to return false
+        return;
+    }
+
+    m_kernel = new CQKernel(m_inparams);
+    m_p = m_kernel->getProperties();
+    
+    // Use exact powers of two for resampling rates. They don't have
+    // to be related to our actual samplerate: the resampler only
+    // cares about the ratio, but it only accepts integer source and
+    // target rates, and if we start from the actual samplerate we
+    // risk getting non-integer rates for lower octaves
+
+    int sourceRate = pow(2, m_octaves);
+    vector<int> latencies;
+
+    // top octave, no resampling
+    latencies.push_back(0);
+    m_upsamplers.push_back(0);
+
+    for (int i = 1; i < m_octaves; ++i) {
+
+        int factor = pow(2, i);
+
+        Resampler *r = new Resampler
+            (sourceRate / factor, sourceRate, 50, 0.05);
+
+#ifdef DEBUG_CQ
+        cerr << "inverse: octave " << i << ": resample from " << sourceRate/factor << " to " << sourceRate << endl;
+#endif
+
+	// See ConstantQ.cpp for discussion on latency -- output
+	// latency here is at target rate which, this way around, is
+	// what we want
+
+        latencies.push_back(r->getLatency());
+        m_upsamplers.push_back(r);
+    }
+
+    // additionally we will have fftHop latency at individual octave
+    // rate (before upsampling) for the overlap-add in each octave
+    for (int i = 0; i < m_octaves; ++i) {
+        latencies[i] += m_p.fftHop * pow(2, i);
+    }
+
+    // Now reverse the drop adjustment made in ConstantQ to align the
+    // atom centres across different octaves (but this time at output
+    // sample rate)
+
+    int emptyHops = m_p.firstCentre / m_p.atomSpacing;
+
+    vector<int> pushes;
+    for (int i = 0; i < m_octaves; ++i) {
+	int factor = pow(2, i);
+	int pushHops = emptyHops * pow(2, m_octaves - i - 1) - emptyHops;
+	int push = ((pushHops * m_p.fftHop) * factor) / m_p.atomsPerFrame;
+	pushes.push_back(push);
+    }
+
+    int maxLatLessPush = 0;
+    for (int i = 0; i < m_octaves; ++i) {
+	int latLessPush = latencies[i] - pushes[i];
+	if (latLessPush > maxLatLessPush) maxLatLessPush = latLessPush;
+    }
+
+    int totalLatency = maxLatLessPush + 10;
+    if (totalLatency < 0) totalLatency = 0;
+
+    m_outputLatency = totalLatency + m_p.firstCentre * pow(2, m_octaves-1);
+
+#ifdef DEBUG_CQ
+    cerr << "totalLatency = " << totalLatency << ", m_outputLatency = " << m_outputLatency << endl;
+#endif
+
+    for (int i = 0; i < m_octaves; ++i) {
+
+	// Calculate the difference between the total latency applied
+	// across all octaves, and the existing latency due to the
+	// upsampler for this octave.
+
+        int latencyPadding = totalLatency - latencies[i] + pushes[i];
+
+#ifdef DEBUG_CQ
+        cerr << "octave " << i << ": push " << pushes[i] << ", resampler latency inc overlap space " << latencies[i] << ", latencyPadding = " << latencyPadding << " (/factor = " << latencyPadding / pow(2, i) << ")" << endl;
+#endif
+
+        m_buffers.push_back(RealSequence(latencyPadding, 0.0));
+    }
+
+    for (int i = 0; i < m_octaves; ++i) {
+        // Fixed-size buffer for IFFT overlap-add
+        m_olaBufs.push_back(RealSequence(m_p.fftSize, 0.0));
+    }
+
+    m_fft = new FFTReal(m_p.fftSize);
+}
+
+CQInverse::RealSequence
+CQInverse::process(const ComplexBlock &block)
+{
+    // The input data is of the form produced by ConstantQ::process --
+    // an unknown number N of columns of varying height. We assert
+    // that N is a multiple of atomsPerFrame * 2^(octaves-1), as must
+    // be the case for data that came directly from our ConstantQ
+    // implementation.
+
+    int widthProvided = block.size();
+
+    if (widthProvided == 0) {
+        return drawFromBuffers();
+    }
+
+    int blockWidth = m_p.atomsPerFrame * int(pow(2, m_octaves - 1));
+
+    if (widthProvided % blockWidth != 0) {
+        cerr << "ERROR: CQInverse::process: Input block size ("
+             << widthProvided
+             << ") must be a multiple of processing block width "
+             << "(atoms-per-frame * 2^(octaves-1) = "
+             << m_p.atomsPerFrame << " * 2^(" << m_octaves << "-1) = "
+             << blockWidth << ")" << endl;
+        throw std::invalid_argument
+            ("Input block size must be a multiple of processing block width");
+    }
+
+    // Procedure:
+    // 
+    // 1. Slice the list of columns into a set of lists of columns,
+    // one per octave, each of width N / (2^octave-1) and height
+    // binsPerOctave, containing the values present in that octave
+    //
+    // 2. Group each octave list by atomsPerFrame columns at a time,
+    // and stack these so as to achieve a list, for each octave, of
+    // taller columns of height binsPerOctave * atomsPerFrame
+    //
+    // 3. For each taller column, take the product with the inverse CQ
+    // kernel (which is the conjugate of the forward kernel) and
+    // perform an inverse FFT
+    //
+    // 4. Overlap-add each octave's resynthesised blocks (unwindowed)
+    //
+    // 5. Resample each octave's overlap-add stream to the original
+    // rate
+    //
+    // 6. Sum the resampled streams and return
+    
+    for (int i = 0; i < m_octaves; ++i) {
+        
+        // Step 1
+
+        ComplexBlock oct;
+
+        for (int j = 0; j < widthProvided; ++j) {
+            int h = block[j].size();
+            if (h < m_binsPerOctave * (i+1)) {
+                continue;
+            }
+            ComplexColumn col(block[j].begin() + m_binsPerOctave * i,
+                              block[j].begin() + m_binsPerOctave * (i+1));
+            oct.push_back(col);
+        }
+
+        // Steps 2, 3, 4, 5
+        processOctave(i, oct);
+    }
+    
+    // Step 6
+    return drawFromBuffers();
+}
+
+CQInverse::RealSequence
+CQInverse::drawFromBuffers()
+{
+    // 6. Sum the resampled streams and return
+
+    int available = 0;
+
+    for (int i = 0; i < m_octaves; ++i) {
+        if (i == 0 || int(m_buffers[i].size()) < available) {
+            available = m_buffers[i].size();
+        }
+    }
+
+    RealSequence result(available, 0);
+
+    if (available == 0) {
+        return result;
+    }
+
+    for (int i = 0; i < m_octaves; ++i) {
+        for (int j = 0; j < available; ++j) {
+            result[j] += m_buffers[i][j];
+        }
+        m_buffers[i] = RealSequence(m_buffers[i].begin() + available,
+                                    m_buffers[i].end());
+    }
+
+    return result;
+}
+
+CQInverse::RealSequence
+CQInverse::getRemainingOutput()
+{
+    for (int j = 0; j < m_octaves; ++j) {
+        int factor = pow(2, j);
+        int latency = (j > 0 ? m_upsamplers[j]->getLatency() : 0) / factor;
+        for (int i = 0; i < (latency + m_p.fftSize) / m_p.fftHop; ++i) {
+            overlapAddAndResample(j, RealSequence(m_olaBufs[j].size(), 0));
+        }
+    }
+
+    return drawFromBuffers();
+}
+
+void
+CQInverse::processOctave(int octave, const ComplexBlock &columns)
+{
+    // 2. Group each octave list by atomsPerFrame columns at a time,
+    // and stack these so as to achieve a list, for each octave, of
+    // taller columns of height binsPerOctave * atomsPerFrame
+
+    int ncols = columns.size();
+
+    if (ncols % m_p.atomsPerFrame != 0) {
+        cerr << "ERROR: CQInverse::process: Number of columns ("
+             << ncols
+             << ") in octave " << octave
+             << " must be a multiple of atoms-per-frame ("
+             << m_p.atomsPerFrame << ")" << endl;
+        throw std::invalid_argument
+            ("Columns in octave must be a multiple of atoms per frame");
+    }
+
+    for (int i = 0; i < ncols; i += m_p.atomsPerFrame) {
+
+        ComplexColumn tallcol;
+        for (int b = 0; b < m_binsPerOctave; ++b) {
+            for (int a = 0; a < m_p.atomsPerFrame; ++a) {
+                tallcol.push_back(columns[i + a][m_binsPerOctave - b - 1]);
+            }
+        }
+        
+        processOctaveColumn(octave, tallcol);
+    }
+}
+
+void
+CQInverse::processOctaveColumn(int octave, const ComplexColumn &column)
+{
+    // 3. For each taller column, take the product with the inverse CQ
+    // kernel (which is the conjugate of the forward kernel) and
+    // perform an inverse FFT
+
+    if ((int)column.size() != m_p.atomsPerFrame * m_binsPerOctave) {
+        cerr << "ERROR: CQInverse::processOctaveColumn: Height of column ("
+             << column.size() << ") in octave " << octave
+             << " must be atoms-per-frame * bins-per-octave ("
+             << m_p.atomsPerFrame << " * " << m_binsPerOctave << " = "
+             << m_p.atomsPerFrame * m_binsPerOctave << ")" << endl;
+        throw std::invalid_argument
+            ("Column height must match atoms-per-frame * bins-per-octave");
+    }
+
+    ComplexSequence transformed = m_kernel->processInverse(column);
+
+    int halfLen = m_p.fftSize/2 + 1;
+
+    RealSequence ri(halfLen, 0);
+    RealSequence ii(halfLen, 0);
+
+    for (int i = 0; i < halfLen; ++i) {
+        ri[i] = transformed[i].real();
+        ii[i] = transformed[i].imag();
+    }
+
+    RealSequence timeDomain(m_p.fftSize, 0);
+
+    m_fft->inverse(ri.data(), ii.data(), timeDomain.data());
+
+    overlapAddAndResample(octave, timeDomain);
+}
+
+void
+CQInverse::overlapAddAndResample(int octave, const RealSequence &seq)
+{
+    // 4. Overlap-add each octave's resynthesised blocks (unwindowed)
+    //
+    // and
+    //
+    // 5. Resample each octave's overlap-add stream to the original
+    // rate
+
+    if (seq.size() != m_olaBufs[octave].size()) {
+        cerr << "ERROR: CQInverse::overlapAdd: input sequence length ("
+             << seq.size() << ") is expected to match OLA buffer size ("
+             << m_olaBufs[octave].size() << ")" << endl;
+        throw std::invalid_argument
+            ("Input sequence length should match OLA buffer size");
+    }
+
+    RealSequence toResample(m_olaBufs[octave].begin(),
+                            m_olaBufs[octave].begin() + m_p.fftHop);
+
+    RealSequence resampled = 
+        octave > 0 ?
+        m_upsamplers[octave]->process(toResample.data(), toResample.size()) :
+        toResample;
+
+    m_buffers[octave].insert(m_buffers[octave].end(),
+                             resampled.begin(),
+                             resampled.end());
+    
+    m_olaBufs[octave] = RealSequence(m_olaBufs[octave].begin() + m_p.fftHop,
+                                     m_olaBufs[octave].end());
+    
+    RealSequence pad(m_p.fftHop, 0);
+
+    m_olaBufs[octave].insert(m_olaBufs[octave].end(),
+                             pad.begin(),
+                             pad.end());
+
+    for (int i = 0; i < m_p.fftSize; ++i) {
+        m_olaBufs[octave][i] += seq[i];
+    }
+}
+