Mercurial > hg > silvet
diff constant-q-cpp/misc/yeti/cqtkernel.yeti @ 366:5d0a2ebb4d17
Bring dependent libraries in to repo
author | Chris Cannam |
---|---|
date | Fri, 24 Jun 2016 14:47:45 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/constant-q-cpp/misc/yeti/cqtkernel.yeti Fri Jun 24 14:47:45 2016 +0100 @@ -0,0 +1,158 @@ +/* + Constant-Q library + Copyright (c) 2013-2014 Queen Mary, University of London + + Permission is hereby granted, free of charge, to any person + obtaining a copy of this software and associated documentation + files (the "Software"), to deal in the Software without + restriction, including without limitation the rights to use, copy, + modify, merge, publish, distribute, sublicense, and/or sell copies + of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be + included in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY + CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF + CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION + WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + + Except as contained in this notice, the names of the Centre for + Digital Music; Queen Mary, University of London; and Chris Cannam + shall not be used in advertising or otherwise to promote the sale, + use or other dealings in this Software without prior written + authorization. +*/ + +module cqtkernel; + +vec = load may.vector; +complex = load may.complex; +window = load may.signal.window; +fft = load may.transform.fft; +cm = load may.matrix.complex; + +{ pow, round, floor, ceil, nextPowerOfTwo } = load may.mathmisc; + +makeKernel { sampleRate, maxFreq, binsPerOctave } = + (q = 1; + atomHopFactor = 0.25; + thresh = 0.0005; + minFreq = (maxFreq/2) * (pow 2 (1/binsPerOctave)); + bigQ = q / ((pow 2 (1/binsPerOctave)) - 1); + + maxNK = round(bigQ * sampleRate / minFreq); + minNK = round(bigQ * sampleRate / + (minFreq * (pow 2 ((binsPerOctave-1) / binsPerOctave)))); + + atomHop = round(minNK * atomHopFactor); + + firstCentre = atomHop * (ceil ((ceil (maxNK/2)) / atomHop)); + + fftSize = nextPowerOfTwo (firstCentre + ceil (maxNK/2)); + +// eprintln "sampleRate = \(sampleRate), maxFreq = \(maxFreq), binsPerOctave = \(binsPerOctave), q = \(q), atomHopFactor = \(atomHopFactor), thresh = \(thresh)"; +// eprintln "minFreq = \(minFreq), bigQ = \(bigQ), maxNK = \(maxNK), minNK = \(minNK), atomHop = \(atomHop), firstCentre = \(firstCentre), fftSize = \(fftSize)"; + + winNr = floor((fftSize - ceil(maxNK/2) - firstCentre) / atomHop) + 1; + + lastCentre = firstCentre + (winNr - 1) * atomHop; + + fftHop = (lastCentre + atomHop) - firstCentre; + +// eprintln "winNr = \(winNr), lastCentre = \(lastCentre), fftHop = \(fftHop)"; + + fftFunc = fft.forward fftSize; + + // Note the MATLAB uses exp(2*pi*1i*x) for a complex generating + // function. We can't do that here; we need to generate real and imag + // parts separately as real = cos(2*pi*x), imag = sin(2*pi*x). + + binFrequencies = array []; + + kernels = map do k: + + nk = round(bigQ * sampleRate / (minFreq * (pow 2 ((k-1)/binsPerOctave)))); + + // the cq MATLAB toolbox uses a symmetric window for + // blackmanharris -- which is odd because it uses a periodic one + // for other types. Oh well + win = vec.divideBy nk + (vec.sqrt + (window.windowFunction (BlackmanHarris ()) [Symmetric true] nk)); + + fk = minFreq * (pow 2 ((k-1)/binsPerOctave)); + + push binFrequencies fk; + + genKernel f = vec.multiply + [win, + vec.fromList + (map do i: f (2 * pi * fk * i / sampleRate) done [0..nk-1])]; + + reals = genKernel cos; + imags = genKernel sin; + + atomOffset = firstCentre - ceil(nk/2); + + map do i: + + shift = vec.zeros (atomOffset + ((i-1) * atomHop)); + + specKernel = fftFunc + (complex.complexArray + (vec.concat [shift, reals]) + (vec.concat [shift, imags])); + + map do c: + if complex.magnitude c <= thresh then complex.zero else c fi + done specKernel; + + done [1..winNr]; + + done [1..binsPerOctave]; + + kmat = cm.toSparse (cm.scaled (1/fftSize) (cm.fromRows (concat kernels))); + +// eprintln "density = \(cm.density kmat) (\(cm.nonZeroValues kmat) of \(cm.width kmat * cm.height kmat))"; + + // Normalisation + + wx1 = vec.maxindex (complex.magnitudes (cm.getRow 0 kmat)); + wx2 = vec.maxindex (complex.magnitudes (cm.getRow (cm.height kmat - 1) kmat)); + + subset = cm.flipped (cm.columnSlice kmat wx1 (wx2+1)); + square = cm.product (cm.conjugateTransposed subset) subset; + + diag = complex.magnitudes (cm.getDiagonal 0 square); + wK = vec.slice diag (round(1/q)) (vec.length diag - round(1/q) - 2); + + weight = (fftHop / fftSize) / (vec.mean (vec.abs wK)); + weight = sqrt(weight); + + kernel = cm.scaled weight kmat; + +// eprintln "weight = \(weight)"; + + { + kernel, + fftSize, + fftHop, + binsPerOctave, + atomsPerFrame = winNr, + atomSpacing = atomHop, + firstCentre, + maxFrequency = maxFreq, + minFrequency = minFreq, + binFrequencies, + bigQ + }); + +{ + makeKernel +} +