Mercurial > hg > silvet
comparison constant-q-cpp/src/CQKernel.cpp @ 366:5d0a2ebb4d17
Bring dependent libraries in to repo
author | Chris Cannam |
---|---|
date | Fri, 24 Jun 2016 14:47:45 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
365:112766f4c34b | 366:5d0a2ebb4d17 |
---|---|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ | |
2 /* | |
3 Constant-Q library | |
4 Copyright (c) 2013-2014 Queen Mary, University of London | |
5 | |
6 Permission is hereby granted, free of charge, to any person | |
7 obtaining a copy of this software and associated documentation | |
8 files (the "Software"), to deal in the Software without | |
9 restriction, including without limitation the rights to use, copy, | |
10 modify, merge, publish, distribute, sublicense, and/or sell copies | |
11 of the Software, and to permit persons to whom the Software is | |
12 furnished to do so, subject to the following conditions: | |
13 | |
14 The above copyright notice and this permission notice shall be | |
15 included in all copies or substantial portions of the Software. | |
16 | |
17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
19 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | |
21 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF | |
22 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |
23 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
24 | |
25 Except as contained in this notice, the names of the Centre for | |
26 Digital Music; Queen Mary, University of London; and Chris Cannam | |
27 shall not be used in advertising or otherwise to promote the sale, | |
28 use or other dealings in this Software without prior written | |
29 authorization. | |
30 */ | |
31 | |
32 #include "CQKernel.h" | |
33 | |
34 #include "dsp/MathUtilities.h" | |
35 #include "dsp/FFT.h" | |
36 #include "dsp/Window.h" | |
37 | |
38 #include <cmath> | |
39 #include <cassert> | |
40 #include <vector> | |
41 #include <iostream> | |
42 #include <algorithm> | |
43 | |
44 #include <cmath> | |
45 | |
46 using std::vector; | |
47 using std::complex; | |
48 using std::cerr; | |
49 using std::endl; | |
50 | |
51 typedef std::complex<double> C; | |
52 | |
53 //#define DEBUG_CQ_KERNEL 1 | |
54 | |
55 CQKernel::CQKernel(CQParameters params) : | |
56 m_inparams(params), | |
57 m_valid(false), | |
58 m_fft(0) | |
59 { | |
60 m_p.sampleRate = params.sampleRate; | |
61 m_p.maxFrequency = params.maxFrequency; | |
62 m_p.binsPerOctave = params.binsPerOctave; | |
63 m_valid = generateKernel(); | |
64 } | |
65 | |
66 CQKernel::~CQKernel() | |
67 { | |
68 delete m_fft; | |
69 } | |
70 | |
71 vector<double> | |
72 CQKernel::makeWindow(int len) const | |
73 { | |
74 // The MATLAB version uses a symmetric window, but our windows | |
75 // are periodic. A symmetric window of size N is a periodic | |
76 // one of size N-1 with the first element stuck on the end. | |
77 | |
78 WindowType wt(BlackmanHarrisWindow); | |
79 | |
80 switch (m_inparams.window) { | |
81 case CQParameters::SqrtBlackmanHarris: | |
82 case CQParameters::BlackmanHarris: | |
83 wt = BlackmanHarrisWindow; | |
84 break; | |
85 case CQParameters::SqrtBlackman: | |
86 case CQParameters::Blackman: | |
87 wt = BlackmanWindow; | |
88 break; | |
89 case CQParameters::SqrtHann: | |
90 case CQParameters::Hann: | |
91 wt = HanningWindow; | |
92 break; | |
93 } | |
94 | |
95 Window<double> w(wt, len-1); | |
96 vector<double> win = w.getWindowData(); | |
97 win.push_back(win[0]); | |
98 | |
99 switch (m_inparams.window) { | |
100 case CQParameters::SqrtBlackmanHarris: | |
101 case CQParameters::SqrtBlackman: | |
102 case CQParameters::SqrtHann: | |
103 for (int i = 0; i < (int)win.size(); ++i) { | |
104 win[i] = sqrt(win[i]) / len; | |
105 } | |
106 break; | |
107 case CQParameters::BlackmanHarris: | |
108 case CQParameters::Blackman: | |
109 case CQParameters::Hann: | |
110 for (int i = 0; i < (int)win.size(); ++i) { | |
111 win[i] = win[i] / len; | |
112 } | |
113 break; | |
114 } | |
115 | |
116 return win; | |
117 } | |
118 | |
119 bool | |
120 CQKernel::generateKernel() | |
121 { | |
122 double q = m_inparams.q; | |
123 double atomHopFactor = m_inparams.atomHopFactor; | |
124 double thresh = m_inparams.threshold; | |
125 | |
126 double bpo = m_p.binsPerOctave; | |
127 | |
128 m_p.minFrequency = (m_p.maxFrequency / 2) * pow(2, 1.0/bpo); | |
129 m_p.Q = q / (pow(2, 1.0/bpo) - 1.0); | |
130 | |
131 double maxNK = int(m_p.Q * m_p.sampleRate / m_p.minFrequency + 0.5); | |
132 double minNK = int | |
133 (m_p.Q * m_p.sampleRate / | |
134 (m_p.minFrequency * pow(2, (bpo - 1.0) / bpo)) + 0.5); | |
135 | |
136 if (minNK == 0 || maxNK == 0) { | |
137 // most likely pathological parameters of some sort | |
138 cerr << "WARNING: CQKernel::generateKernel: minNK or maxNK is zero (minNK == " << minNK << ", maxNK == " << maxNK << "), not generating a kernel" << endl; | |
139 m_p.atomSpacing = 0; | |
140 m_p.firstCentre = 0; | |
141 m_p.fftSize = 0; | |
142 m_p.atomsPerFrame = 0; | |
143 m_p.lastCentre = 0; | |
144 m_p.fftHop = 0; | |
145 return false; | |
146 } | |
147 | |
148 m_p.atomSpacing = int(minNK * atomHopFactor + 0.5); | |
149 m_p.firstCentre = m_p.atomSpacing * ceil(ceil(maxNK / 2.0) / m_p.atomSpacing); | |
150 m_p.fftSize = MathUtilities::nextPowerOfTwo | |
151 (m_p.firstCentre + ceil(maxNK / 2.0)); | |
152 | |
153 m_p.atomsPerFrame = floor | |
154 (1.0 + (m_p.fftSize - ceil(maxNK / 2.0) - m_p.firstCentre) / m_p.atomSpacing); | |
155 | |
156 #ifdef DEBUG_CQ_KERNEL | |
157 cerr << "atomsPerFrame = " << m_p.atomsPerFrame << " (q = " << q << ", Q = " << m_p.Q << ", atomHopFactor = " << atomHopFactor << ", atomSpacing = " << m_p.atomSpacing << ", fftSize = " << m_p.fftSize << ", maxNK = " << maxNK << ", firstCentre = " << m_p.firstCentre << ")" << endl; | |
158 #endif | |
159 | |
160 m_p.lastCentre = m_p.firstCentre + (m_p.atomsPerFrame - 1) * m_p.atomSpacing; | |
161 | |
162 m_p.fftHop = (m_p.lastCentre + m_p.atomSpacing) - m_p.firstCentre; | |
163 | |
164 #ifdef DEBUG_CQ_KERNEL | |
165 cerr << "fftHop = " << m_p.fftHop << endl; | |
166 #endif | |
167 | |
168 m_fft = new FFT(m_p.fftSize); | |
169 | |
170 for (int k = 1; k <= m_p.binsPerOctave; ++k) { | |
171 | |
172 int nk = int(m_p.Q * m_p.sampleRate / | |
173 (m_p.minFrequency * pow(2, ((k-1.0) / bpo))) + 0.5); | |
174 | |
175 vector<double> win = makeWindow(nk); | |
176 | |
177 double fk = m_p.minFrequency * pow(2, ((k-1.0) / bpo)); | |
178 | |
179 vector<double> reals, imags; | |
180 | |
181 for (int i = 0; i < nk; ++i) { | |
182 double arg = (2.0 * M_PI * fk * i) / m_p.sampleRate; | |
183 reals.push_back(win[i] * cos(arg)); | |
184 imags.push_back(win[i] * sin(arg)); | |
185 } | |
186 | |
187 int atomOffset = m_p.firstCentre - int(ceil(nk/2.0)); | |
188 | |
189 for (int i = 0; i < m_p.atomsPerFrame; ++i) { | |
190 | |
191 int shift = atomOffset + (i * m_p.atomSpacing); | |
192 | |
193 vector<double> rin(m_p.fftSize, 0.0); | |
194 vector<double> iin(m_p.fftSize, 0.0); | |
195 | |
196 for (int j = 0; j < nk; ++j) { | |
197 rin[j + shift] = reals[j]; | |
198 iin[j + shift] = imags[j]; | |
199 } | |
200 | |
201 vector<double> rout(m_p.fftSize, 0.0); | |
202 vector<double> iout(m_p.fftSize, 0.0); | |
203 | |
204 m_fft->process(false, | |
205 rin.data(), iin.data(), | |
206 rout.data(), iout.data()); | |
207 | |
208 // Keep this dense for the moment (until after | |
209 // normalisation calculations) | |
210 | |
211 vector<C> row; | |
212 | |
213 for (int j = 0; j < m_p.fftSize; ++j) { | |
214 if (sqrt(rout[j] * rout[j] + iout[j] * iout[j]) < thresh) { | |
215 row.push_back(C(0, 0)); | |
216 } else { | |
217 row.push_back(C(rout[j] / m_p.fftSize, | |
218 iout[j] / m_p.fftSize)); | |
219 } | |
220 } | |
221 | |
222 m_kernel.origin.push_back(0); | |
223 m_kernel.data.push_back(row); | |
224 } | |
225 } | |
226 | |
227 assert((int)m_kernel.data.size() == m_p.binsPerOctave * m_p.atomsPerFrame); | |
228 | |
229 // print density as diagnostic | |
230 | |
231 int nnz = 0; | |
232 for (int i = 0; i < (int)m_kernel.data.size(); ++i) { | |
233 for (int j = 0; j < (int)m_kernel.data[i].size(); ++j) { | |
234 if (m_kernel.data[i][j] != C(0, 0)) { | |
235 ++nnz; | |
236 } | |
237 } | |
238 } | |
239 | |
240 #ifdef DEBUG_CQ_KERNEL | |
241 cerr << "size = " << m_kernel.data.size() << "*" << m_kernel.data[0].size() << " (fft size = " << m_p.fftSize << ")" << endl; | |
242 #endif | |
243 | |
244 assert((int)m_kernel.data.size() == m_p.binsPerOctave * m_p.atomsPerFrame); | |
245 assert((int)m_kernel.data[0].size() == m_p.fftSize); | |
246 | |
247 #ifdef DEBUG_CQ_KERNEL | |
248 cerr << "density = " << double(nnz) / double(m_p.binsPerOctave * m_p.atomsPerFrame * m_p.fftSize) << " (" << nnz << " of " << m_p.binsPerOctave * m_p.atomsPerFrame * m_p.fftSize << ")" << endl; | |
249 #endif | |
250 | |
251 finaliseKernel(); | |
252 return true; | |
253 } | |
254 | |
255 static bool ccomparator(C &c1, C &c2) | |
256 { | |
257 return abs(c1) < abs(c2); | |
258 } | |
259 | |
260 static int maxidx(vector<C> &v) | |
261 { | |
262 return std::max_element(v.begin(), v.end(), ccomparator) - v.begin(); | |
263 } | |
264 | |
265 void | |
266 CQKernel::finaliseKernel() | |
267 { | |
268 // calculate weight for normalisation | |
269 | |
270 int wx1 = maxidx(m_kernel.data[0]); | |
271 int wx2 = maxidx(m_kernel.data[m_kernel.data.size()-1]); | |
272 | |
273 vector<vector<C> > subset(m_kernel.data.size()); | |
274 for (int j = wx1; j <= wx2; ++j) { | |
275 for (int i = 0; i < (int)m_kernel.data.size(); ++i) { | |
276 subset[i].push_back(m_kernel.data[i][j]); | |
277 } | |
278 } | |
279 | |
280 int nrows = subset.size(); | |
281 int ncols = subset[0].size(); | |
282 vector<vector<C> > square(ncols); // conjugate transpose of subset * subset | |
283 | |
284 for (int i = 0; i < nrows; ++i) { | |
285 assert((int)subset[i].size() == ncols); | |
286 } | |
287 | |
288 for (int j = 0; j < ncols; ++j) { | |
289 for (int i = 0; i < ncols; ++i) { | |
290 C v(0, 0); | |
291 for (int k = 0; k < nrows; ++k) { | |
292 v += subset[k][i] * conj(subset[k][j]); | |
293 } | |
294 square[i].push_back(v); | |
295 } | |
296 } | |
297 | |
298 vector<double> wK; | |
299 double q = m_inparams.q; | |
300 for (int i = int(1.0/q + 0.5); i < ncols - int(1.0/q + 0.5) - 2; ++i) { | |
301 wK.push_back(abs(square[i][i])); | |
302 } | |
303 | |
304 double weight = double(m_p.fftHop) / m_p.fftSize; | |
305 if (!wK.empty()) { | |
306 weight /= MathUtilities::mean(wK.data(), wK.size()); | |
307 } | |
308 weight = sqrt(weight); | |
309 | |
310 #ifdef DEBUG_CQ_KERNEL | |
311 cerr << "weight = " << weight << " (from " << wK.size() << " elements in wK, ncols = " << ncols << ", q = " << q << ")" << endl; | |
312 #endif | |
313 | |
314 // apply normalisation weight, make sparse, and store conjugate | |
315 // (we use the adjoint or conjugate transpose of the kernel matrix | |
316 // for the forward transform, the plain kernel for the inverse | |
317 // which we expect to be less common) | |
318 | |
319 KernelMatrix sk; | |
320 | |
321 for (int i = 0; i < (int)m_kernel.data.size(); ++i) { | |
322 | |
323 sk.origin.push_back(0); | |
324 sk.data.push_back(vector<C>()); | |
325 | |
326 int lastNZ = 0; | |
327 for (int j = (int)m_kernel.data[i].size()-1; j >= 0; --j) { | |
328 if (abs(m_kernel.data[i][j]) != 0.0) { | |
329 lastNZ = j; | |
330 break; | |
331 } | |
332 } | |
333 | |
334 bool haveNZ = false; | |
335 for (int j = 0; j <= lastNZ; ++j) { | |
336 if (haveNZ || abs(m_kernel.data[i][j]) != 0.0) { | |
337 if (!haveNZ) sk.origin[i] = j; | |
338 haveNZ = true; | |
339 sk.data[i].push_back(conj(m_kernel.data[i][j]) * weight); | |
340 } | |
341 } | |
342 } | |
343 | |
344 m_kernel = sk; | |
345 } | |
346 | |
347 vector<C> | |
348 CQKernel::processForward(const vector<C> &cv) | |
349 { | |
350 // straightforward matrix multiply (taking into account m_kernel's | |
351 // slightly-sparse representation) | |
352 | |
353 if (m_kernel.data.empty()) return vector<C>(); | |
354 | |
355 int nrows = m_p.binsPerOctave * m_p.atomsPerFrame; | |
356 | |
357 vector<C> rv(nrows, C()); | |
358 | |
359 for (int i = 0; i < nrows; ++i) { | |
360 int len = m_kernel.data[i].size(); | |
361 for (int j = 0; j < len; ++j) { | |
362 rv[i] += cv[j + m_kernel.origin[i]] * m_kernel.data[i][j]; | |
363 } | |
364 } | |
365 | |
366 return rv; | |
367 } | |
368 | |
369 vector<C> | |
370 CQKernel::processInverse(const vector<C> &cv) | |
371 { | |
372 // matrix multiply by conjugate transpose of m_kernel. This is | |
373 // actually the original kernel as calculated, we just stored the | |
374 // conjugate-transpose of the kernel because we expect to be doing | |
375 // more forward transforms than inverse ones. | |
376 | |
377 if (m_kernel.data.empty()) return vector<C>(); | |
378 | |
379 int ncols = m_p.binsPerOctave * m_p.atomsPerFrame; | |
380 int nrows = m_p.fftSize; | |
381 | |
382 vector<C> rv(nrows, C()); | |
383 | |
384 for (int j = 0; j < ncols; ++j) { | |
385 int i0 = m_kernel.origin[j]; | |
386 int i1 = i0 + m_kernel.data[j].size(); | |
387 for (int i = i0; i < i1; ++i) { | |
388 rv[i] += cv[j] * conj(m_kernel.data[j][i - i0]); | |
389 } | |
390 } | |
391 | |
392 return rv; | |
393 } | |
394 | |
395 |