Mercurial > hg > silvet
comparison constant-q-cpp/src/CQInverse.cpp @ 366:5d0a2ebb4d17
Bring dependent libraries in to repo
author | Chris Cannam |
---|---|
date | Fri, 24 Jun 2016 14:47:45 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
365:112766f4c34b | 366:5d0a2ebb4d17 |
---|---|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ | |
2 /* | |
3 Constant-Q library | |
4 Copyright (c) 2013-2014 Queen Mary, University of London | |
5 | |
6 Permission is hereby granted, free of charge, to any person | |
7 obtaining a copy of this software and associated documentation | |
8 files (the "Software"), to deal in the Software without | |
9 restriction, including without limitation the rights to use, copy, | |
10 modify, merge, publish, distribute, sublicense, and/or sell copies | |
11 of the Software, and to permit persons to whom the Software is | |
12 furnished to do so, subject to the following conditions: | |
13 | |
14 The above copyright notice and this permission notice shall be | |
15 included in all copies or substantial portions of the Software. | |
16 | |
17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
19 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | |
21 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF | |
22 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |
23 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
24 | |
25 Except as contained in this notice, the names of the Centre for | |
26 Digital Music; Queen Mary, University of London; and Chris Cannam | |
27 shall not be used in advertising or otherwise to promote the sale, | |
28 use or other dealings in this Software without prior written | |
29 authorization. | |
30 */ | |
31 | |
32 #include "CQInverse.h" | |
33 | |
34 #include "dsp/Resampler.h" | |
35 #include "dsp/MathUtilities.h" | |
36 #include "dsp/FFT.h" | |
37 | |
38 #include <algorithm> | |
39 #include <iostream> | |
40 #include <stdexcept> | |
41 | |
42 #include <cmath> | |
43 | |
44 using std::vector; | |
45 using std::cerr; | |
46 using std::endl; | |
47 | |
48 //#define DEBUG_CQ 1 | |
49 | |
50 CQInverse::CQInverse(CQParameters params) : | |
51 m_inparams(params), | |
52 m_sampleRate(params.sampleRate), | |
53 m_maxFrequency(params.maxFrequency), | |
54 m_minFrequency(params.minFrequency), | |
55 m_binsPerOctave(params.binsPerOctave), | |
56 m_fft(0) | |
57 { | |
58 if (m_minFrequency <= 0.0 || m_maxFrequency <= 0.0) { | |
59 throw std::invalid_argument("Frequency extents must be positive"); | |
60 } | |
61 | |
62 initialise(); | |
63 } | |
64 | |
65 CQInverse::~CQInverse() | |
66 { | |
67 delete m_fft; | |
68 for (int i = 0; i < (int)m_upsamplers.size(); ++i) { | |
69 delete m_upsamplers[i]; | |
70 } | |
71 delete m_kernel; | |
72 } | |
73 | |
74 double | |
75 CQInverse::getMinFrequency() const | |
76 { | |
77 return m_p.minFrequency / pow(2.0, m_octaves - 1); | |
78 } | |
79 | |
80 double | |
81 CQInverse::getBinFrequency(double bin) const | |
82 { | |
83 // our bins are returned in high->low order | |
84 bin = (getBinsPerOctave() * getOctaves()) - bin - 1; | |
85 return getMinFrequency() * pow(2, (bin / getBinsPerOctave())); | |
86 } | |
87 | |
88 void | |
89 CQInverse::initialise() | |
90 { | |
91 m_octaves = int(ceil(log(m_maxFrequency / m_minFrequency) / log(2))); | |
92 | |
93 if (m_octaves < 1) { | |
94 m_kernel = 0; // incidentally causing isValid() to return false | |
95 return; | |
96 } | |
97 | |
98 m_kernel = new CQKernel(m_inparams); | |
99 m_p = m_kernel->getProperties(); | |
100 | |
101 // Use exact powers of two for resampling rates. They don't have | |
102 // to be related to our actual samplerate: the resampler only | |
103 // cares about the ratio, but it only accepts integer source and | |
104 // target rates, and if we start from the actual samplerate we | |
105 // risk getting non-integer rates for lower octaves | |
106 | |
107 int sourceRate = pow(2, m_octaves); | |
108 vector<int> latencies; | |
109 | |
110 // top octave, no resampling | |
111 latencies.push_back(0); | |
112 m_upsamplers.push_back(0); | |
113 | |
114 for (int i = 1; i < m_octaves; ++i) { | |
115 | |
116 int factor = pow(2, i); | |
117 | |
118 Resampler *r = new Resampler | |
119 (sourceRate / factor, sourceRate, 50, 0.05); | |
120 | |
121 #ifdef DEBUG_CQ | |
122 cerr << "inverse: octave " << i << ": resample from " << sourceRate/factor << " to " << sourceRate << endl; | |
123 #endif | |
124 | |
125 // See ConstantQ.cpp for discussion on latency -- output | |
126 // latency here is at target rate which, this way around, is | |
127 // what we want | |
128 | |
129 latencies.push_back(r->getLatency()); | |
130 m_upsamplers.push_back(r); | |
131 } | |
132 | |
133 // additionally we will have fftHop latency at individual octave | |
134 // rate (before upsampling) for the overlap-add in each octave | |
135 for (int i = 0; i < m_octaves; ++i) { | |
136 latencies[i] += m_p.fftHop * pow(2, i); | |
137 } | |
138 | |
139 // Now reverse the drop adjustment made in ConstantQ to align the | |
140 // atom centres across different octaves (but this time at output | |
141 // sample rate) | |
142 | |
143 int emptyHops = m_p.firstCentre / m_p.atomSpacing; | |
144 | |
145 vector<int> pushes; | |
146 for (int i = 0; i < m_octaves; ++i) { | |
147 int factor = pow(2, i); | |
148 int pushHops = emptyHops * pow(2, m_octaves - i - 1) - emptyHops; | |
149 int push = ((pushHops * m_p.fftHop) * factor) / m_p.atomsPerFrame; | |
150 pushes.push_back(push); | |
151 } | |
152 | |
153 int maxLatLessPush = 0; | |
154 for (int i = 0; i < m_octaves; ++i) { | |
155 int latLessPush = latencies[i] - pushes[i]; | |
156 if (latLessPush > maxLatLessPush) maxLatLessPush = latLessPush; | |
157 } | |
158 | |
159 int totalLatency = maxLatLessPush + 10; | |
160 if (totalLatency < 0) totalLatency = 0; | |
161 | |
162 m_outputLatency = totalLatency + m_p.firstCentre * pow(2, m_octaves-1); | |
163 | |
164 #ifdef DEBUG_CQ | |
165 cerr << "totalLatency = " << totalLatency << ", m_outputLatency = " << m_outputLatency << endl; | |
166 #endif | |
167 | |
168 for (int i = 0; i < m_octaves; ++i) { | |
169 | |
170 // Calculate the difference between the total latency applied | |
171 // across all octaves, and the existing latency due to the | |
172 // upsampler for this octave. | |
173 | |
174 int latencyPadding = totalLatency - latencies[i] + pushes[i]; | |
175 | |
176 #ifdef DEBUG_CQ | |
177 cerr << "octave " << i << ": push " << pushes[i] << ", resampler latency inc overlap space " << latencies[i] << ", latencyPadding = " << latencyPadding << " (/factor = " << latencyPadding / pow(2, i) << ")" << endl; | |
178 #endif | |
179 | |
180 m_buffers.push_back(RealSequence(latencyPadding, 0.0)); | |
181 } | |
182 | |
183 for (int i = 0; i < m_octaves; ++i) { | |
184 // Fixed-size buffer for IFFT overlap-add | |
185 m_olaBufs.push_back(RealSequence(m_p.fftSize, 0.0)); | |
186 } | |
187 | |
188 m_fft = new FFTReal(m_p.fftSize); | |
189 } | |
190 | |
191 CQInverse::RealSequence | |
192 CQInverse::process(const ComplexBlock &block) | |
193 { | |
194 // The input data is of the form produced by ConstantQ::process -- | |
195 // an unknown number N of columns of varying height. We assert | |
196 // that N is a multiple of atomsPerFrame * 2^(octaves-1), as must | |
197 // be the case for data that came directly from our ConstantQ | |
198 // implementation. | |
199 | |
200 int widthProvided = block.size(); | |
201 | |
202 if (widthProvided == 0) { | |
203 return drawFromBuffers(); | |
204 } | |
205 | |
206 int blockWidth = m_p.atomsPerFrame * int(pow(2, m_octaves - 1)); | |
207 | |
208 if (widthProvided % blockWidth != 0) { | |
209 cerr << "ERROR: CQInverse::process: Input block size (" | |
210 << widthProvided | |
211 << ") must be a multiple of processing block width " | |
212 << "(atoms-per-frame * 2^(octaves-1) = " | |
213 << m_p.atomsPerFrame << " * 2^(" << m_octaves << "-1) = " | |
214 << blockWidth << ")" << endl; | |
215 throw std::invalid_argument | |
216 ("Input block size must be a multiple of processing block width"); | |
217 } | |
218 | |
219 // Procedure: | |
220 // | |
221 // 1. Slice the list of columns into a set of lists of columns, | |
222 // one per octave, each of width N / (2^octave-1) and height | |
223 // binsPerOctave, containing the values present in that octave | |
224 // | |
225 // 2. Group each octave list by atomsPerFrame columns at a time, | |
226 // and stack these so as to achieve a list, for each octave, of | |
227 // taller columns of height binsPerOctave * atomsPerFrame | |
228 // | |
229 // 3. For each taller column, take the product with the inverse CQ | |
230 // kernel (which is the conjugate of the forward kernel) and | |
231 // perform an inverse FFT | |
232 // | |
233 // 4. Overlap-add each octave's resynthesised blocks (unwindowed) | |
234 // | |
235 // 5. Resample each octave's overlap-add stream to the original | |
236 // rate | |
237 // | |
238 // 6. Sum the resampled streams and return | |
239 | |
240 for (int i = 0; i < m_octaves; ++i) { | |
241 | |
242 // Step 1 | |
243 | |
244 ComplexBlock oct; | |
245 | |
246 for (int j = 0; j < widthProvided; ++j) { | |
247 int h = block[j].size(); | |
248 if (h < m_binsPerOctave * (i+1)) { | |
249 continue; | |
250 } | |
251 ComplexColumn col(block[j].begin() + m_binsPerOctave * i, | |
252 block[j].begin() + m_binsPerOctave * (i+1)); | |
253 oct.push_back(col); | |
254 } | |
255 | |
256 // Steps 2, 3, 4, 5 | |
257 processOctave(i, oct); | |
258 } | |
259 | |
260 // Step 6 | |
261 return drawFromBuffers(); | |
262 } | |
263 | |
264 CQInverse::RealSequence | |
265 CQInverse::drawFromBuffers() | |
266 { | |
267 // 6. Sum the resampled streams and return | |
268 | |
269 int available = 0; | |
270 | |
271 for (int i = 0; i < m_octaves; ++i) { | |
272 if (i == 0 || int(m_buffers[i].size()) < available) { | |
273 available = m_buffers[i].size(); | |
274 } | |
275 } | |
276 | |
277 RealSequence result(available, 0); | |
278 | |
279 if (available == 0) { | |
280 return result; | |
281 } | |
282 | |
283 for (int i = 0; i < m_octaves; ++i) { | |
284 for (int j = 0; j < available; ++j) { | |
285 result[j] += m_buffers[i][j]; | |
286 } | |
287 m_buffers[i] = RealSequence(m_buffers[i].begin() + available, | |
288 m_buffers[i].end()); | |
289 } | |
290 | |
291 return result; | |
292 } | |
293 | |
294 CQInverse::RealSequence | |
295 CQInverse::getRemainingOutput() | |
296 { | |
297 for (int j = 0; j < m_octaves; ++j) { | |
298 int factor = pow(2, j); | |
299 int latency = (j > 0 ? m_upsamplers[j]->getLatency() : 0) / factor; | |
300 for (int i = 0; i < (latency + m_p.fftSize) / m_p.fftHop; ++i) { | |
301 overlapAddAndResample(j, RealSequence(m_olaBufs[j].size(), 0)); | |
302 } | |
303 } | |
304 | |
305 return drawFromBuffers(); | |
306 } | |
307 | |
308 void | |
309 CQInverse::processOctave(int octave, const ComplexBlock &columns) | |
310 { | |
311 // 2. Group each octave list by atomsPerFrame columns at a time, | |
312 // and stack these so as to achieve a list, for each octave, of | |
313 // taller columns of height binsPerOctave * atomsPerFrame | |
314 | |
315 int ncols = columns.size(); | |
316 | |
317 if (ncols % m_p.atomsPerFrame != 0) { | |
318 cerr << "ERROR: CQInverse::process: Number of columns (" | |
319 << ncols | |
320 << ") in octave " << octave | |
321 << " must be a multiple of atoms-per-frame (" | |
322 << m_p.atomsPerFrame << ")" << endl; | |
323 throw std::invalid_argument | |
324 ("Columns in octave must be a multiple of atoms per frame"); | |
325 } | |
326 | |
327 for (int i = 0; i < ncols; i += m_p.atomsPerFrame) { | |
328 | |
329 ComplexColumn tallcol; | |
330 for (int b = 0; b < m_binsPerOctave; ++b) { | |
331 for (int a = 0; a < m_p.atomsPerFrame; ++a) { | |
332 tallcol.push_back(columns[i + a][m_binsPerOctave - b - 1]); | |
333 } | |
334 } | |
335 | |
336 processOctaveColumn(octave, tallcol); | |
337 } | |
338 } | |
339 | |
340 void | |
341 CQInverse::processOctaveColumn(int octave, const ComplexColumn &column) | |
342 { | |
343 // 3. For each taller column, take the product with the inverse CQ | |
344 // kernel (which is the conjugate of the forward kernel) and | |
345 // perform an inverse FFT | |
346 | |
347 if ((int)column.size() != m_p.atomsPerFrame * m_binsPerOctave) { | |
348 cerr << "ERROR: CQInverse::processOctaveColumn: Height of column (" | |
349 << column.size() << ") in octave " << octave | |
350 << " must be atoms-per-frame * bins-per-octave (" | |
351 << m_p.atomsPerFrame << " * " << m_binsPerOctave << " = " | |
352 << m_p.atomsPerFrame * m_binsPerOctave << ")" << endl; | |
353 throw std::invalid_argument | |
354 ("Column height must match atoms-per-frame * bins-per-octave"); | |
355 } | |
356 | |
357 ComplexSequence transformed = m_kernel->processInverse(column); | |
358 | |
359 int halfLen = m_p.fftSize/2 + 1; | |
360 | |
361 RealSequence ri(halfLen, 0); | |
362 RealSequence ii(halfLen, 0); | |
363 | |
364 for (int i = 0; i < halfLen; ++i) { | |
365 ri[i] = transformed[i].real(); | |
366 ii[i] = transformed[i].imag(); | |
367 } | |
368 | |
369 RealSequence timeDomain(m_p.fftSize, 0); | |
370 | |
371 m_fft->inverse(ri.data(), ii.data(), timeDomain.data()); | |
372 | |
373 overlapAddAndResample(octave, timeDomain); | |
374 } | |
375 | |
376 void | |
377 CQInverse::overlapAddAndResample(int octave, const RealSequence &seq) | |
378 { | |
379 // 4. Overlap-add each octave's resynthesised blocks (unwindowed) | |
380 // | |
381 // and | |
382 // | |
383 // 5. Resample each octave's overlap-add stream to the original | |
384 // rate | |
385 | |
386 if (seq.size() != m_olaBufs[octave].size()) { | |
387 cerr << "ERROR: CQInverse::overlapAdd: input sequence length (" | |
388 << seq.size() << ") is expected to match OLA buffer size (" | |
389 << m_olaBufs[octave].size() << ")" << endl; | |
390 throw std::invalid_argument | |
391 ("Input sequence length should match OLA buffer size"); | |
392 } | |
393 | |
394 RealSequence toResample(m_olaBufs[octave].begin(), | |
395 m_olaBufs[octave].begin() + m_p.fftHop); | |
396 | |
397 RealSequence resampled = | |
398 octave > 0 ? | |
399 m_upsamplers[octave]->process(toResample.data(), toResample.size()) : | |
400 toResample; | |
401 | |
402 m_buffers[octave].insert(m_buffers[octave].end(), | |
403 resampled.begin(), | |
404 resampled.end()); | |
405 | |
406 m_olaBufs[octave] = RealSequence(m_olaBufs[octave].begin() + m_p.fftHop, | |
407 m_olaBufs[octave].end()); | |
408 | |
409 RealSequence pad(m_p.fftHop, 0); | |
410 | |
411 m_olaBufs[octave].insert(m_olaBufs[octave].end(), | |
412 pad.begin(), | |
413 pad.end()); | |
414 | |
415 for (int i = 0; i < m_p.fftSize; ++i) { | |
416 m_olaBufs[octave][i] += seq[i]; | |
417 } | |
418 } | |
419 |