annotate constant-q-cpp/src/CQInverse.cpp @ 372:af71cbdab621 tip

Update bqvec code
author Chris Cannam
date Tue, 19 Nov 2019 10:13:32 +0000
parents 5d0a2ebb4d17
children
rev   line source
Chris@366 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@366 2 /*
Chris@366 3 Constant-Q library
Chris@366 4 Copyright (c) 2013-2014 Queen Mary, University of London
Chris@366 5
Chris@366 6 Permission is hereby granted, free of charge, to any person
Chris@366 7 obtaining a copy of this software and associated documentation
Chris@366 8 files (the "Software"), to deal in the Software without
Chris@366 9 restriction, including without limitation the rights to use, copy,
Chris@366 10 modify, merge, publish, distribute, sublicense, and/or sell copies
Chris@366 11 of the Software, and to permit persons to whom the Software is
Chris@366 12 furnished to do so, subject to the following conditions:
Chris@366 13
Chris@366 14 The above copyright notice and this permission notice shall be
Chris@366 15 included in all copies or substantial portions of the Software.
Chris@366 16
Chris@366 17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
Chris@366 18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
Chris@366 19 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
Chris@366 20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
Chris@366 21 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
Chris@366 22 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
Chris@366 23 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Chris@366 24
Chris@366 25 Except as contained in this notice, the names of the Centre for
Chris@366 26 Digital Music; Queen Mary, University of London; and Chris Cannam
Chris@366 27 shall not be used in advertising or otherwise to promote the sale,
Chris@366 28 use or other dealings in this Software without prior written
Chris@366 29 authorization.
Chris@366 30 */
Chris@366 31
Chris@366 32 #include "CQInverse.h"
Chris@366 33
Chris@366 34 #include "dsp/Resampler.h"
Chris@366 35 #include "dsp/MathUtilities.h"
Chris@366 36 #include "dsp/FFT.h"
Chris@366 37
Chris@366 38 #include <algorithm>
Chris@366 39 #include <iostream>
Chris@366 40 #include <stdexcept>
Chris@366 41
Chris@366 42 #include <cmath>
Chris@366 43
Chris@366 44 using std::vector;
Chris@366 45 using std::cerr;
Chris@366 46 using std::endl;
Chris@366 47
Chris@366 48 //#define DEBUG_CQ 1
Chris@366 49
Chris@366 50 CQInverse::CQInverse(CQParameters params) :
Chris@366 51 m_inparams(params),
Chris@366 52 m_sampleRate(params.sampleRate),
Chris@366 53 m_maxFrequency(params.maxFrequency),
Chris@366 54 m_minFrequency(params.minFrequency),
Chris@366 55 m_binsPerOctave(params.binsPerOctave),
Chris@366 56 m_fft(0)
Chris@366 57 {
Chris@366 58 if (m_minFrequency <= 0.0 || m_maxFrequency <= 0.0) {
Chris@366 59 throw std::invalid_argument("Frequency extents must be positive");
Chris@366 60 }
Chris@366 61
Chris@366 62 initialise();
Chris@366 63 }
Chris@366 64
Chris@366 65 CQInverse::~CQInverse()
Chris@366 66 {
Chris@366 67 delete m_fft;
Chris@366 68 for (int i = 0; i < (int)m_upsamplers.size(); ++i) {
Chris@366 69 delete m_upsamplers[i];
Chris@366 70 }
Chris@366 71 delete m_kernel;
Chris@366 72 }
Chris@366 73
Chris@366 74 double
Chris@366 75 CQInverse::getMinFrequency() const
Chris@366 76 {
Chris@366 77 return m_p.minFrequency / pow(2.0, m_octaves - 1);
Chris@366 78 }
Chris@366 79
Chris@366 80 double
Chris@366 81 CQInverse::getBinFrequency(double bin) const
Chris@366 82 {
Chris@366 83 // our bins are returned in high->low order
Chris@366 84 bin = (getBinsPerOctave() * getOctaves()) - bin - 1;
Chris@366 85 return getMinFrequency() * pow(2, (bin / getBinsPerOctave()));
Chris@366 86 }
Chris@366 87
Chris@366 88 void
Chris@366 89 CQInverse::initialise()
Chris@366 90 {
Chris@366 91 m_octaves = int(ceil(log(m_maxFrequency / m_minFrequency) / log(2)));
Chris@366 92
Chris@366 93 if (m_octaves < 1) {
Chris@366 94 m_kernel = 0; // incidentally causing isValid() to return false
Chris@366 95 return;
Chris@366 96 }
Chris@366 97
Chris@366 98 m_kernel = new CQKernel(m_inparams);
Chris@366 99 m_p = m_kernel->getProperties();
Chris@366 100
Chris@366 101 // Use exact powers of two for resampling rates. They don't have
Chris@366 102 // to be related to our actual samplerate: the resampler only
Chris@366 103 // cares about the ratio, but it only accepts integer source and
Chris@366 104 // target rates, and if we start from the actual samplerate we
Chris@366 105 // risk getting non-integer rates for lower octaves
Chris@366 106
Chris@366 107 int sourceRate = pow(2, m_octaves);
Chris@366 108 vector<int> latencies;
Chris@366 109
Chris@366 110 // top octave, no resampling
Chris@366 111 latencies.push_back(0);
Chris@366 112 m_upsamplers.push_back(0);
Chris@366 113
Chris@366 114 for (int i = 1; i < m_octaves; ++i) {
Chris@366 115
Chris@366 116 int factor = pow(2, i);
Chris@366 117
Chris@366 118 Resampler *r = new Resampler
Chris@366 119 (sourceRate / factor, sourceRate, 50, 0.05);
Chris@366 120
Chris@366 121 #ifdef DEBUG_CQ
Chris@366 122 cerr << "inverse: octave " << i << ": resample from " << sourceRate/factor << " to " << sourceRate << endl;
Chris@366 123 #endif
Chris@366 124
Chris@366 125 // See ConstantQ.cpp for discussion on latency -- output
Chris@366 126 // latency here is at target rate which, this way around, is
Chris@366 127 // what we want
Chris@366 128
Chris@366 129 latencies.push_back(r->getLatency());
Chris@366 130 m_upsamplers.push_back(r);
Chris@366 131 }
Chris@366 132
Chris@366 133 // additionally we will have fftHop latency at individual octave
Chris@366 134 // rate (before upsampling) for the overlap-add in each octave
Chris@366 135 for (int i = 0; i < m_octaves; ++i) {
Chris@366 136 latencies[i] += m_p.fftHop * pow(2, i);
Chris@366 137 }
Chris@366 138
Chris@366 139 // Now reverse the drop adjustment made in ConstantQ to align the
Chris@366 140 // atom centres across different octaves (but this time at output
Chris@366 141 // sample rate)
Chris@366 142
Chris@366 143 int emptyHops = m_p.firstCentre / m_p.atomSpacing;
Chris@366 144
Chris@366 145 vector<int> pushes;
Chris@366 146 for (int i = 0; i < m_octaves; ++i) {
Chris@366 147 int factor = pow(2, i);
Chris@366 148 int pushHops = emptyHops * pow(2, m_octaves - i - 1) - emptyHops;
Chris@366 149 int push = ((pushHops * m_p.fftHop) * factor) / m_p.atomsPerFrame;
Chris@366 150 pushes.push_back(push);
Chris@366 151 }
Chris@366 152
Chris@366 153 int maxLatLessPush = 0;
Chris@366 154 for (int i = 0; i < m_octaves; ++i) {
Chris@366 155 int latLessPush = latencies[i] - pushes[i];
Chris@366 156 if (latLessPush > maxLatLessPush) maxLatLessPush = latLessPush;
Chris@366 157 }
Chris@366 158
Chris@366 159 int totalLatency = maxLatLessPush + 10;
Chris@366 160 if (totalLatency < 0) totalLatency = 0;
Chris@366 161
Chris@366 162 m_outputLatency = totalLatency + m_p.firstCentre * pow(2, m_octaves-1);
Chris@366 163
Chris@366 164 #ifdef DEBUG_CQ
Chris@366 165 cerr << "totalLatency = " << totalLatency << ", m_outputLatency = " << m_outputLatency << endl;
Chris@366 166 #endif
Chris@366 167
Chris@366 168 for (int i = 0; i < m_octaves; ++i) {
Chris@366 169
Chris@366 170 // Calculate the difference between the total latency applied
Chris@366 171 // across all octaves, and the existing latency due to the
Chris@366 172 // upsampler for this octave.
Chris@366 173
Chris@366 174 int latencyPadding = totalLatency - latencies[i] + pushes[i];
Chris@366 175
Chris@366 176 #ifdef DEBUG_CQ
Chris@366 177 cerr << "octave " << i << ": push " << pushes[i] << ", resampler latency inc overlap space " << latencies[i] << ", latencyPadding = " << latencyPadding << " (/factor = " << latencyPadding / pow(2, i) << ")" << endl;
Chris@366 178 #endif
Chris@366 179
Chris@366 180 m_buffers.push_back(RealSequence(latencyPadding, 0.0));
Chris@366 181 }
Chris@366 182
Chris@366 183 for (int i = 0; i < m_octaves; ++i) {
Chris@366 184 // Fixed-size buffer for IFFT overlap-add
Chris@366 185 m_olaBufs.push_back(RealSequence(m_p.fftSize, 0.0));
Chris@366 186 }
Chris@366 187
Chris@366 188 m_fft = new FFTReal(m_p.fftSize);
Chris@366 189 }
Chris@366 190
Chris@366 191 CQInverse::RealSequence
Chris@366 192 CQInverse::process(const ComplexBlock &block)
Chris@366 193 {
Chris@366 194 // The input data is of the form produced by ConstantQ::process --
Chris@366 195 // an unknown number N of columns of varying height. We assert
Chris@366 196 // that N is a multiple of atomsPerFrame * 2^(octaves-1), as must
Chris@366 197 // be the case for data that came directly from our ConstantQ
Chris@366 198 // implementation.
Chris@366 199
Chris@366 200 int widthProvided = block.size();
Chris@366 201
Chris@366 202 if (widthProvided == 0) {
Chris@366 203 return drawFromBuffers();
Chris@366 204 }
Chris@366 205
Chris@366 206 int blockWidth = m_p.atomsPerFrame * int(pow(2, m_octaves - 1));
Chris@366 207
Chris@366 208 if (widthProvided % blockWidth != 0) {
Chris@366 209 cerr << "ERROR: CQInverse::process: Input block size ("
Chris@366 210 << widthProvided
Chris@366 211 << ") must be a multiple of processing block width "
Chris@366 212 << "(atoms-per-frame * 2^(octaves-1) = "
Chris@366 213 << m_p.atomsPerFrame << " * 2^(" << m_octaves << "-1) = "
Chris@366 214 << blockWidth << ")" << endl;
Chris@366 215 throw std::invalid_argument
Chris@366 216 ("Input block size must be a multiple of processing block width");
Chris@366 217 }
Chris@366 218
Chris@366 219 // Procedure:
Chris@366 220 //
Chris@366 221 // 1. Slice the list of columns into a set of lists of columns,
Chris@366 222 // one per octave, each of width N / (2^octave-1) and height
Chris@366 223 // binsPerOctave, containing the values present in that octave
Chris@366 224 //
Chris@366 225 // 2. Group each octave list by atomsPerFrame columns at a time,
Chris@366 226 // and stack these so as to achieve a list, for each octave, of
Chris@366 227 // taller columns of height binsPerOctave * atomsPerFrame
Chris@366 228 //
Chris@366 229 // 3. For each taller column, take the product with the inverse CQ
Chris@366 230 // kernel (which is the conjugate of the forward kernel) and
Chris@366 231 // perform an inverse FFT
Chris@366 232 //
Chris@366 233 // 4. Overlap-add each octave's resynthesised blocks (unwindowed)
Chris@366 234 //
Chris@366 235 // 5. Resample each octave's overlap-add stream to the original
Chris@366 236 // rate
Chris@366 237 //
Chris@366 238 // 6. Sum the resampled streams and return
Chris@366 239
Chris@366 240 for (int i = 0; i < m_octaves; ++i) {
Chris@366 241
Chris@366 242 // Step 1
Chris@366 243
Chris@366 244 ComplexBlock oct;
Chris@366 245
Chris@366 246 for (int j = 0; j < widthProvided; ++j) {
Chris@366 247 int h = block[j].size();
Chris@366 248 if (h < m_binsPerOctave * (i+1)) {
Chris@366 249 continue;
Chris@366 250 }
Chris@366 251 ComplexColumn col(block[j].begin() + m_binsPerOctave * i,
Chris@366 252 block[j].begin() + m_binsPerOctave * (i+1));
Chris@366 253 oct.push_back(col);
Chris@366 254 }
Chris@366 255
Chris@366 256 // Steps 2, 3, 4, 5
Chris@366 257 processOctave(i, oct);
Chris@366 258 }
Chris@366 259
Chris@366 260 // Step 6
Chris@366 261 return drawFromBuffers();
Chris@366 262 }
Chris@366 263
Chris@366 264 CQInverse::RealSequence
Chris@366 265 CQInverse::drawFromBuffers()
Chris@366 266 {
Chris@366 267 // 6. Sum the resampled streams and return
Chris@366 268
Chris@366 269 int available = 0;
Chris@366 270
Chris@366 271 for (int i = 0; i < m_octaves; ++i) {
Chris@366 272 if (i == 0 || int(m_buffers[i].size()) < available) {
Chris@366 273 available = m_buffers[i].size();
Chris@366 274 }
Chris@366 275 }
Chris@366 276
Chris@366 277 RealSequence result(available, 0);
Chris@366 278
Chris@366 279 if (available == 0) {
Chris@366 280 return result;
Chris@366 281 }
Chris@366 282
Chris@366 283 for (int i = 0; i < m_octaves; ++i) {
Chris@366 284 for (int j = 0; j < available; ++j) {
Chris@366 285 result[j] += m_buffers[i][j];
Chris@366 286 }
Chris@366 287 m_buffers[i] = RealSequence(m_buffers[i].begin() + available,
Chris@366 288 m_buffers[i].end());
Chris@366 289 }
Chris@366 290
Chris@366 291 return result;
Chris@366 292 }
Chris@366 293
Chris@366 294 CQInverse::RealSequence
Chris@366 295 CQInverse::getRemainingOutput()
Chris@366 296 {
Chris@366 297 for (int j = 0; j < m_octaves; ++j) {
Chris@366 298 int factor = pow(2, j);
Chris@366 299 int latency = (j > 0 ? m_upsamplers[j]->getLatency() : 0) / factor;
Chris@366 300 for (int i = 0; i < (latency + m_p.fftSize) / m_p.fftHop; ++i) {
Chris@366 301 overlapAddAndResample(j, RealSequence(m_olaBufs[j].size(), 0));
Chris@366 302 }
Chris@366 303 }
Chris@366 304
Chris@366 305 return drawFromBuffers();
Chris@366 306 }
Chris@366 307
Chris@366 308 void
Chris@366 309 CQInverse::processOctave(int octave, const ComplexBlock &columns)
Chris@366 310 {
Chris@366 311 // 2. Group each octave list by atomsPerFrame columns at a time,
Chris@366 312 // and stack these so as to achieve a list, for each octave, of
Chris@366 313 // taller columns of height binsPerOctave * atomsPerFrame
Chris@366 314
Chris@366 315 int ncols = columns.size();
Chris@366 316
Chris@366 317 if (ncols % m_p.atomsPerFrame != 0) {
Chris@366 318 cerr << "ERROR: CQInverse::process: Number of columns ("
Chris@366 319 << ncols
Chris@366 320 << ") in octave " << octave
Chris@366 321 << " must be a multiple of atoms-per-frame ("
Chris@366 322 << m_p.atomsPerFrame << ")" << endl;
Chris@366 323 throw std::invalid_argument
Chris@366 324 ("Columns in octave must be a multiple of atoms per frame");
Chris@366 325 }
Chris@366 326
Chris@366 327 for (int i = 0; i < ncols; i += m_p.atomsPerFrame) {
Chris@366 328
Chris@366 329 ComplexColumn tallcol;
Chris@366 330 for (int b = 0; b < m_binsPerOctave; ++b) {
Chris@366 331 for (int a = 0; a < m_p.atomsPerFrame; ++a) {
Chris@366 332 tallcol.push_back(columns[i + a][m_binsPerOctave - b - 1]);
Chris@366 333 }
Chris@366 334 }
Chris@366 335
Chris@366 336 processOctaveColumn(octave, tallcol);
Chris@366 337 }
Chris@366 338 }
Chris@366 339
Chris@366 340 void
Chris@366 341 CQInverse::processOctaveColumn(int octave, const ComplexColumn &column)
Chris@366 342 {
Chris@366 343 // 3. For each taller column, take the product with the inverse CQ
Chris@366 344 // kernel (which is the conjugate of the forward kernel) and
Chris@366 345 // perform an inverse FFT
Chris@366 346
Chris@366 347 if ((int)column.size() != m_p.atomsPerFrame * m_binsPerOctave) {
Chris@366 348 cerr << "ERROR: CQInverse::processOctaveColumn: Height of column ("
Chris@366 349 << column.size() << ") in octave " << octave
Chris@366 350 << " must be atoms-per-frame * bins-per-octave ("
Chris@366 351 << m_p.atomsPerFrame << " * " << m_binsPerOctave << " = "
Chris@366 352 << m_p.atomsPerFrame * m_binsPerOctave << ")" << endl;
Chris@366 353 throw std::invalid_argument
Chris@366 354 ("Column height must match atoms-per-frame * bins-per-octave");
Chris@366 355 }
Chris@366 356
Chris@366 357 ComplexSequence transformed = m_kernel->processInverse(column);
Chris@366 358
Chris@366 359 int halfLen = m_p.fftSize/2 + 1;
Chris@366 360
Chris@366 361 RealSequence ri(halfLen, 0);
Chris@366 362 RealSequence ii(halfLen, 0);
Chris@366 363
Chris@366 364 for (int i = 0; i < halfLen; ++i) {
Chris@366 365 ri[i] = transformed[i].real();
Chris@366 366 ii[i] = transformed[i].imag();
Chris@366 367 }
Chris@366 368
Chris@366 369 RealSequence timeDomain(m_p.fftSize, 0);
Chris@366 370
Chris@366 371 m_fft->inverse(ri.data(), ii.data(), timeDomain.data());
Chris@366 372
Chris@366 373 overlapAddAndResample(octave, timeDomain);
Chris@366 374 }
Chris@366 375
Chris@366 376 void
Chris@366 377 CQInverse::overlapAddAndResample(int octave, const RealSequence &seq)
Chris@366 378 {
Chris@366 379 // 4. Overlap-add each octave's resynthesised blocks (unwindowed)
Chris@366 380 //
Chris@366 381 // and
Chris@366 382 //
Chris@366 383 // 5. Resample each octave's overlap-add stream to the original
Chris@366 384 // rate
Chris@366 385
Chris@366 386 if (seq.size() != m_olaBufs[octave].size()) {
Chris@366 387 cerr << "ERROR: CQInverse::overlapAdd: input sequence length ("
Chris@366 388 << seq.size() << ") is expected to match OLA buffer size ("
Chris@366 389 << m_olaBufs[octave].size() << ")" << endl;
Chris@366 390 throw std::invalid_argument
Chris@366 391 ("Input sequence length should match OLA buffer size");
Chris@366 392 }
Chris@366 393
Chris@366 394 RealSequence toResample(m_olaBufs[octave].begin(),
Chris@366 395 m_olaBufs[octave].begin() + m_p.fftHop);
Chris@366 396
Chris@366 397 RealSequence resampled =
Chris@366 398 octave > 0 ?
Chris@366 399 m_upsamplers[octave]->process(toResample.data(), toResample.size()) :
Chris@366 400 toResample;
Chris@366 401
Chris@366 402 m_buffers[octave].insert(m_buffers[octave].end(),
Chris@366 403 resampled.begin(),
Chris@366 404 resampled.end());
Chris@366 405
Chris@366 406 m_olaBufs[octave] = RealSequence(m_olaBufs[octave].begin() + m_p.fftHop,
Chris@366 407 m_olaBufs[octave].end());
Chris@366 408
Chris@366 409 RealSequence pad(m_p.fftHop, 0);
Chris@366 410
Chris@366 411 m_olaBufs[octave].insert(m_olaBufs[octave].end(),
Chris@366 412 pad.begin(),
Chris@366 413 pad.end());
Chris@366 414
Chris@366 415 for (int i = 0; i < m_p.fftSize; ++i) {
Chris@366 416 m_olaBufs[octave][i] += seq[i];
Chris@366 417 }
Chris@366 418 }
Chris@366 419