Chris@5
|
1 function [w,h,z,u,xa] = cplcaMT( x, K, T, R, w, h, z, u, iter, sw, sh, sz, su, lw, lh, lz, lu, pa)
|
Chris@5
|
2 % function [w,h,xa2] = cplcaMT( x, K, T, R, w, h, z, u, iter, sw, sh, sz, su, lw, lh, lz, lu)
|
Chris@5
|
3 %
|
Chris@5
|
4 % Perform multiple-source, multiple-template SIPLCA for transcription
|
Chris@5
|
5 %
|
Chris@5
|
6 % Inputs:
|
Chris@5
|
7 % x input distribution
|
Chris@5
|
8 % K number of components
|
Chris@5
|
9 % T size of components
|
Chris@5
|
10 % R size of sources
|
Chris@5
|
11 % w initial value of p(w) [default = random]
|
Chris@5
|
12 % h initial value of p(h) [default = random]
|
Chris@5
|
13 % z initial value of p(z) [default = random]
|
Chris@5
|
14 % iter number of EM iterations [default = 10]
|
Chris@5
|
15 % sw sparsity parameter for w [default = 1]
|
Chris@5
|
16 % sh sparsity parameter for h [default = 1]
|
Chris@5
|
17 % sz sparsity parameter for z [default = 1]
|
Chris@5
|
18 % lw flag to update w [default = 1]
|
Chris@5
|
19 % lh flag to update h [default = 1]
|
Chris@5
|
20 % lh flag to update h [default = 1]
|
Chris@5
|
21 % pa source-component activity range [Rx2]
|
Chris@5
|
22 %
|
Chris@5
|
23 % Outputs:
|
Chris@5
|
24 % w p(w) - spectral bases
|
Chris@5
|
25 % h p(h) - pitch impulse
|
Chris@5
|
26 % z p(z) - mixing matrix for p(h)
|
Chris@5
|
27 % xa approximation of input
|
Chris@5
|
28
|
Chris@5
|
29 % Emmanouil Benetos 2011, based on cplca code by Paris Smaragdis
|
Chris@5
|
30
|
Chris@5
|
31
|
Chris@5
|
32 %% for the transcription application,
|
Chris@5
|
33 %% x -> noise-reduced constant Q. In the application this is a 2-sec,
|
Chris@5
|
34 %% 100-col segment with 2 zeros at top and bottom, so 549x100
|
Chris@5
|
35 %% K -> 88, number of notes
|
Chris@5
|
36 %% T -> [545 1], a two-element array: 545 is the length of each
|
Chris@5
|
37 %% template, but why 1?
|
Chris@5
|
38 %% R -> 10, number of instruments
|
Chris@5
|
39 %% w -> a 10x88 cell array, in which w{instrument,note} is a 545x1
|
Chris@5
|
40 %% array containing the template for the given instrument and note
|
Chris@5
|
41 %% number
|
Chris@5
|
42 %% h -> empty
|
Chris@5
|
43 %% z -> empty
|
Chris@5
|
44 %% u -> empty
|
Chris@5
|
45 %% iter -> a parameter for the program, 12 in the mirex submission
|
Chris@5
|
46 %% sw -> 1
|
Chris@5
|
47 %% sh -> 1
|
Chris@5
|
48 %% sz -> 1.1
|
Chris@5
|
49 %% su -> 1.3, not documented above, presumably sparsity for u
|
Chris@5
|
50 %% lw -> 0, don't update w
|
Chris@5
|
51 %% lh -> 1, do update h
|
Chris@5
|
52 %% lz -> 1, do update z
|
Chris@5
|
53 %% lu -> 1, not documented above, presumably do update u
|
Chris@5
|
54 %% pa -> a 10x2 array in which pa(instrument,1) is the lowest note
|
Chris@5
|
55 %% expected for that instrument and pa(instrument,2) is the highest
|
Chris@5
|
56
|
Chris@5
|
57
|
Chris@5
|
58 % Sort out the sizes
|
Chris@5
|
59
|
Chris@5
|
60 wc = 2*size(x)-T; %% works out to 553x199
|
Chris@5
|
61 hc = size(x)+T-1; %% works out to 1093x100
|
Chris@5
|
62
|
Chris@5
|
63 % Default training iterations
|
Chris@5
|
64 if ~exist( 'iter')
|
Chris@5
|
65 iter = 10;
|
Chris@5
|
66 end
|
Chris@5
|
67
|
Chris@5
|
68
|
Chris@5
|
69 % Initialize
|
Chris@5
|
70 sumx = sum(x); %% for later normalisation
|
Chris@5
|
71
|
Chris@5
|
72 if ~exist( 'w') || isempty( w)
|
Chris@5
|
73 %% doesn't happen, w was provided (it's the template data)
|
Chris@5
|
74 w = cell(R, K);
|
Chris@5
|
75 for k = 1:K
|
Chris@5
|
76 for r=1:R
|
Chris@5
|
77 w{r,k} = rand( T);
|
Chris@5
|
78 w{r,k} = w{r,k} / sum( w{r,k}(:));
|
Chris@5
|
79 end
|
Chris@5
|
80 end
|
Chris@5
|
81 end
|
Chris@5
|
82 if ~exist( 'h') || isempty( h)
|
Chris@5
|
83 %% does happen, h was not provided
|
Chris@5
|
84 h = cell(1, K);
|
Chris@5
|
85 for k = 1:K
|
Chris@5
|
86 h{k} = rand( size(x)-T+1);
|
Chris@5
|
87 h{k} = h{k};
|
Chris@5
|
88 end
|
Chris@5
|
89 %% h is now a 1x88 cell, h{note} is a 5x100 array of random values.
|
Chris@5
|
90 %% The 5 comes from the height of the CQ array minus the length of
|
Chris@5
|
91 %% a template, plus 1. I guess this is space to allow for the
|
Chris@5
|
92 %% 5-bins-per-semitone pitch shift.
|
Chris@5
|
93 end
|
Chris@5
|
94 if ~exist( 'z') || isempty( z)
|
Chris@5
|
95 %% does happen, z was not provided
|
Chris@5
|
96 z = cell(1, K);
|
Chris@5
|
97 for k = 1:K
|
Chris@5
|
98 z{k} = rand( size(x,2),1);
|
Chris@5
|
99 z{k} = z{k};
|
Chris@5
|
100 end
|
Chris@5
|
101 %% z is a 1x88 cell, z{note} is a 100x1 array of random values.
|
Chris@5
|
102 end
|
Chris@5
|
103 if ~exist( 'u') || isempty( u)
|
Chris@5
|
104 %% does happen, u was not provided
|
Chris@5
|
105 u = cell(R, K);
|
Chris@5
|
106 for k = 1:K
|
Chris@5
|
107 for r=1:R
|
Chris@5
|
108 if( (pa(r,1) <= k && k <= pa(r,2)) )
|
Chris@5
|
109 u{r,k} = ones( size(x,2),1);
|
Chris@5
|
110 else
|
Chris@5
|
111 u{r,k} = zeros( size(x,2),1);
|
Chris@5
|
112 end
|
Chris@5
|
113 end;
|
Chris@5
|
114 end
|
Chris@5
|
115 %% u is a 10x88 cell, u{instrument,note} is a 100x1 double containing
|
Chris@5
|
116 %% all 1s if note is in-range for instrument and all 0s otherwise
|
Chris@5
|
117 end
|
Chris@5
|
118
|
Chris@6
|
119 fh = cell(1, K); %% 1x88
|
Chris@6
|
120 fw = cell(R, K); %% 10x88
|
Chris@5
|
121 for k = 1:K
|
Chris@5
|
122 fh{k} = ones(wc) + 1i*ones(wc);
|
Chris@5
|
123 for r=1:R
|
Chris@5
|
124 fw{r,k} = ones(wc) + 1i*ones(wc);
|
Chris@5
|
125 end;
|
Chris@5
|
126 end;
|
Chris@5
|
127
|
Chris@6
|
128 %% now fh is a 1x88 cell, and fh{note} is a 553x199 array initialised
|
Chris@6
|
129 %% with all complex values 1 + 1i
|
Chris@6
|
130
|
Chris@6
|
131 %% fw is a 10x88 cell, and fw{instrument,note} is a 553x199 array
|
Chris@6
|
132 %% likewise
|
Chris@5
|
133
|
Chris@5
|
134
|
Chris@5
|
135 % Make commands for subsequent multidim operations and initialize fw
|
Chris@6
|
136
|
Chris@5
|
137 fnh = 'c(hc(1)-(T(1)+(1:size(h{k},1))-2),hc(2)-(T(2)+(1:size(h{k},2))-2))';
|
Chris@5
|
138 xai = 'xa(1:size(x,1),1:size(x,2))';
|
Chris@5
|
139 flz = 'xbar(end:-1:1,end:-1:1)';
|
Chris@5
|
140
|
Chris@5
|
141 for k = 1:K
|
Chris@5
|
142 for r=1:R
|
Chris@5
|
143 if( (pa(r,1) <= k && k <= pa(r,2)) )
|
Chris@6
|
144
|
Chris@6
|
145 %% fftn(X,siz) takes an N-dimensional FFT (same number of
|
Chris@6
|
146 %% dimensions as siz) of X, padding or truncating X
|
Chris@6
|
147 %% beforehand so that it is of size siz. Here w{r,k} is the
|
Chris@6
|
148 %% 545x1 template for instrument r and note k, and wc is
|
Chris@6
|
149 %% 553x199.
|
Chris@6
|
150
|
Chris@6
|
151 %% I believe this is equivalent to performing a 553-point
|
Chris@6
|
152 %% FFT of each column of the input (with w{r,k} in the first
|
Chris@6
|
153 %% 545 elements of the first column of that input) and then
|
Chris@6
|
154 %% a 199-point FFT of each row of the result.
|
Chris@6
|
155
|
Chris@6
|
156 %% The output is of course complex.
|
Chris@6
|
157
|
Chris@5
|
158 fw{r,k} = fftn( w{r,k}, wc);
|
Chris@5
|
159 end;
|
Chris@5
|
160 end;
|
Chris@5
|
161 end;
|
Chris@5
|
162
|
Chris@5
|
163 % Iterate
|
Chris@5
|
164 for it = 1:iter
|
Chris@5
|
165
|
Chris@5
|
166 %disp(['Iteration: ' num2str(it)]);
|
Chris@5
|
167
|
Chris@5
|
168 % E-step
|
Chris@5
|
169 xa = eps;
|
Chris@6
|
170 for k = 16:73 %% overall note range found in instrument set
|
Chris@5
|
171 fh{k} = fftn( h{k}, wc);
|
Chris@5
|
172 for r=1:R
|
Chris@5
|
173 if( (pa(r,1) <= k && k <= pa(r,2)) )
|
Chris@5
|
174 xa1 = abs( real( ifftn( fw{r,k} .* fh{k})));
|
Chris@5
|
175 xa = xa + xa1(1:size(x,1),1:size(x,2)) .*repmat(z{k},1,size(x,1))'.*repmat(u{r,k},1,size(x,1))';
|
Chris@5
|
176 clear xa1;
|
Chris@5
|
177 end
|
Chris@5
|
178 end
|
Chris@5
|
179 end
|
Chris@5
|
180
|
Chris@5
|
181 xbar = x ./ xa;
|
Chris@5
|
182 xbar = eval( flz);
|
Chris@5
|
183 fx = fftn( xbar, wc);
|
Chris@5
|
184
|
Chris@5
|
185
|
Chris@5
|
186 % M-step
|
Chris@5
|
187 for k = 16:73
|
Chris@5
|
188
|
Chris@5
|
189
|
Chris@5
|
190 % Update h, z, u
|
Chris@5
|
191 nh=eps;
|
Chris@5
|
192 for r=1:R
|
Chris@5
|
193 if( (pa(r,1) <= k && k <= pa(r,2)) )
|
Chris@5
|
194 c = abs( real( ifftn( fx .* fw{r,k} )));
|
Chris@5
|
195 nh1 = eval( fnh);
|
Chris@5
|
196 nh1 = nh1 .*repmat(u{r,k},1,size(h{k},1))';
|
Chris@5
|
197 nh = nh + nh1;
|
Chris@5
|
198
|
Chris@5
|
199 nhu = eval( fnh);
|
Chris@5
|
200 nhu = nhu .* h{k};
|
Chris@5
|
201 nu = sum(nhu)';
|
Chris@5
|
202 nu = u{r,k} .* nu + eps;
|
Chris@5
|
203 if lu
|
Chris@5
|
204 u{r,k} = nu;
|
Chris@5
|
205 end;
|
Chris@5
|
206
|
Chris@5
|
207 end;
|
Chris@5
|
208 end
|
Chris@5
|
209 nh = h{k} .* (nh.^sh);
|
Chris@5
|
210 nz = sum(nh)';
|
Chris@5
|
211 nz = z{k} .* nz + eps;
|
Chris@5
|
212
|
Chris@5
|
213
|
Chris@5
|
214 % Assign and normalize
|
Chris@5
|
215 if lh
|
Chris@5
|
216 h{k} = nh;
|
Chris@5
|
217 end
|
Chris@5
|
218 if lz
|
Chris@5
|
219 z{k} = nz;
|
Chris@5
|
220 end
|
Chris@5
|
221
|
Chris@5
|
222
|
Chris@5
|
223 end
|
Chris@5
|
224
|
Chris@5
|
225 % Normalize z over t
|
Chris@5
|
226 if lz
|
Chris@5
|
227 Z=[]; for i=1:K Z=[Z z{i}]; end;
|
Chris@5
|
228 Z = Z.^sz;
|
Chris@5
|
229 Z(1:end,1:15)=0;
|
Chris@5
|
230 Z(1:end,74:88)=0;
|
Chris@5
|
231 Z = Z./repmat(sum(Z,2),1,K); z = num2cell(Z,1); %figure; imagesc(imrotate(Z,90));
|
Chris@5
|
232 end
|
Chris@5
|
233
|
Chris@5
|
234 % Normalize u over z,t
|
Chris@5
|
235 if lu
|
Chris@5
|
236 U=[]; for r=1:R U(r,:,:) = cell2mat(u(r,:)); end;
|
Chris@5
|
237 for i=1:size(U,2) for j=1:size(U,3) U(:,i,j) = U(:,i,j).^su; U(:,i,j) = U(:,i,j) ./ sum(U(:,i,j)); end; end;
|
Chris@5
|
238 U0 = permute(U,[2 1 3]); u = squeeze(num2cell(U0,1));
|
Chris@5
|
239 end
|
Chris@5
|
240
|
Chris@5
|
241 % Normalize h over z,t
|
Chris@5
|
242 H=[]; for k=1:K H(k,:,:) = cell2mat(h(k)); end; H0 = permute(H,[2 1 3]);
|
Chris@5
|
243 for i=1:size(H0,2) for j=1:size(H0,3) H0(:,i,j) = sumx(j)* (H0(:,i,j) ./ sum(H0(:,i,j))); end; end;
|
Chris@5
|
244 h = squeeze(num2cell(squeeze(H0),[1 3])); for k=1:K h{k} = squeeze(h{k}); end;
|
Chris@5
|
245
|
Chris@5
|
246 %figure; imagesc(imrotate(xa',90));
|
Chris@5
|
247
|
Chris@5
|
248 end
|
Chris@5
|
249
|
Chris@5
|
250 %figure; imagesc(imrotate(xa',90));
|