DaveM@0: { DaveM@0: "cells": [ DaveM@0: { DaveM@0: "cell_type": "code", DaveM@0: "execution_count": 1, DaveM@0: "metadata": { DaveM@0: "collapsed": false DaveM@0: }, DaveM@0: "outputs": [], DaveM@0: "source": [ DaveM@0: "from matplotlib import pyplot as plt\n", DaveM@0: "from scipy.cluster.hierarchy import dendrogram, linkage, cophenet\n", DaveM@0: "from scipy.spatial.distance import pdist\n", DaveM@1: "import sklearn \n", DaveM@0: "import numpy as np\n", DaveM@0: "import csv\n", DaveM@0: "\n", DaveM@0: "dataFolder = '../data/'\n", DaveM@0: "keyFile = 'AdobeNormalised'\n", DaveM@0: "datapath = dataFolder + keyFile" DaveM@0: ] DaveM@0: }, DaveM@0: { DaveM@0: "cell_type": "code", DaveM@0: "execution_count": 2, DaveM@0: "metadata": { DaveM@0: "collapsed": true DaveM@0: }, DaveM@0: "outputs": [], DaveM@0: "source": [ DaveM@0: "X = np.genfromtxt(datapath+'.csv', delimiter = ',', skip_header = 1)\n", DaveM@0: "filenames = np.loadtxt(datapath+'_filenames.csv', dtype = str)\n", DaveM@0: "labels = np.loadtxt(datapath+'_labels.csv', dtype = str)\n", DaveM@0: "features = np.loadtxt(datapath+'_features.csv', dtype = str)\n" DaveM@0: ] DaveM@0: }, DaveM@0: { DaveM@0: "cell_type": "code", DaveM@0: "execution_count": null, DaveM@0: "metadata": { DaveM@0: "collapsed": false DaveM@0: }, DaveM@0: "outputs": [], DaveM@0: "source": [ DaveM@1: "agglo = cluster.FeatureAgglomeration()\n", DaveM@1: "agglo.fit(X)\n", DaveM@1: "X_reduced = agglo.transform(X)" DaveM@0: ] DaveM@0: }, DaveM@0: { DaveM@0: "cell_type": "code", DaveM@0: "execution_count": null, DaveM@0: "metadata": { DaveM@0: "collapsed": false DaveM@0: }, DaveM@0: "outputs": [], DaveM@0: "source": [ DaveM@0: "Z = linkage(X)" DaveM@0: ] DaveM@0: }, DaveM@0: { DaveM@0: "cell_type": "code", DaveM@1: "execution_count": 18, DaveM@1: "metadata": { DaveM@1: "collapsed": false DaveM@1: }, DaveM@1: "outputs": [ DaveM@1: { DaveM@1: "name": "stdout", DaveM@1: "output_type": "stream", DaveM@1: "text": [ DaveM@1: "[[ 8.51810000e-01 4.00000000e-06 2.46000000e-04 ..., 2.10260000e-02\n", DaveM@1: " 1.98220000e-02 1.04000000e-04]\n", DaveM@1: " [ 9.52275000e-01 7.00000000e-06 1.82600000e-03 ..., 1.79490000e-02\n", DaveM@1: " 1.09020000e-02 7.20000000e-05]\n", DaveM@1: " [ 1.92200000e-03 1.00000000e-06 1.39000000e-04 ..., 2.35900000e-02\n", DaveM@1: " 6.93800000e-03 2.61000000e-04]\n", DaveM@1: " ..., \n", DaveM@1: " [ 9.96346000e-01 3.37000000e-04 1.23600000e-03 ..., 5.24103000e-01\n", DaveM@1: " 3.36967000e-01 5.39000000e-04]\n", DaveM@1: " [ 9.99990000e-01 1.00000000e-06 0.00000000e+00 ..., 0.00000000e+00\n", DaveM@1: " 0.00000000e+00 0.00000000e+00]\n", DaveM@1: " [ 9.96624000e-01 6.97000000e-04 2.59300000e-03 ..., 5.24615000e-01\n", DaveM@1: " 3.34985000e-01 5.45000000e-04]]\n" DaveM@1: ] DaveM@1: } DaveM@1: ], DaveM@1: "source": [ DaveM@1: "print X" DaveM@1: ] DaveM@1: }, DaveM@1: { DaveM@1: "cell_type": "code", DaveM@1: "execution_count": 29, DaveM@1: "metadata": { DaveM@1: "collapsed": false DaveM@1: }, DaveM@1: "outputs": [ DaveM@1: { DaveM@1: "name": "stdout", DaveM@1: "output_type": "stream", DaveM@1: "text": [ DaveM@1: "(8977, 1536)\n" DaveM@1: ] DaveM@1: } DaveM@1: ], DaveM@1: "source": [] DaveM@1: }, DaveM@1: { DaveM@1: "cell_type": "code", DaveM@1: "execution_count": 42, DaveM@1: "metadata": { DaveM@1: "collapsed": false DaveM@1: }, DaveM@1: "outputs": [ DaveM@1: { DaveM@1: "name": "stdout", DaveM@1: "output_type": "stream", DaveM@1: "text": [ DaveM@1: "{'nu_0': 0, 'kappa_0': 0, 'lambda_0': 0, 'mu_0': 0}\n" DaveM@1: ] DaveM@1: } DaveM@1: ], DaveM@1: "source": [] DaveM@1: }, DaveM@1: { DaveM@1: "cell_type": "code", DaveM@1: "execution_count": null, DaveM@1: "metadata": { DaveM@1: "collapsed": true DaveM@1: }, DaveM@1: "outputs": [], DaveM@1: "source": [ DaveM@1: "import pyBHC as bhc\n", DaveM@1: "from pyBHC import dists\n", DaveM@1: "\n", DaveM@1: "mu_init = []\n", DaveM@1: "sigma_init = []\n", DaveM@1: "S_init = []\n", DaveM@1: "cd = dists.NormalFixedCovar(mu_0=mu_init,sigma_0=sigma_init, S=S_init)\n", DaveM@1: "\n", DaveM@1: "# temp = cd.log_marginal_likelihood(X)\n", DaveM@1: "d = bhc.rbhc(X, cd)" DaveM@1: ] DaveM@1: }, DaveM@1: { DaveM@1: "cell_type": "code", DaveM@1: "execution_count": null, DaveM@1: "metadata": { DaveM@1: "collapsed": true DaveM@1: }, DaveM@1: "outputs": [], DaveM@1: "source": [ DaveM@1: "\n", DaveM@1: "\n" DaveM@1: ] DaveM@1: }, DaveM@1: { DaveM@1: "cell_type": "code", DaveM@1: "execution_count": null, DaveM@1: "metadata": { DaveM@1: "collapsed": true DaveM@1: }, DaveM@1: "outputs": [], DaveM@1: "source": [] DaveM@1: }, DaveM@1: { DaveM@1: "cell_type": "code", DaveM@1: "execution_count": null, DaveM@1: "metadata": { DaveM@1: "collapsed": true DaveM@1: }, DaveM@1: "outputs": [], DaveM@1: "source": [] DaveM@1: }, DaveM@1: { DaveM@1: "cell_type": "code", DaveM@0: "execution_count": null, DaveM@0: "metadata": { DaveM@0: "collapsed": true DaveM@0: }, DaveM@0: "outputs": [], DaveM@0: "source": [] DaveM@0: } DaveM@0: ], DaveM@0: "metadata": { DaveM@0: "kernelspec": { DaveM@0: "display_name": "Python 2", DaveM@0: "language": "python", DaveM@0: "name": "python2" DaveM@0: }, DaveM@0: "language_info": { DaveM@0: "codemirror_mode": { DaveM@0: "name": "ipython", DaveM@0: "version": 2 DaveM@0: }, DaveM@0: "file_extension": ".py", DaveM@0: "mimetype": "text/x-python", DaveM@0: "name": "python", DaveM@0: "nbconvert_exporter": "python", DaveM@0: "pygments_lexer": "ipython2", DaveM@0: "version": "2.7.10" DaveM@0: } DaveM@0: }, DaveM@0: "nbformat": 4, DaveM@0: "nbformat_minor": 0 DaveM@0: }