Mercurial > hg > sfx-subgrouping
diff code/Hierarchical Clustering.ipynb @ 1:995546d09284
add gensim notebook and matlab scripts
author | DaveM |
---|---|
date | Tue, 24 Jan 2017 17:44:45 +0000 |
parents | 7d69c0d6f4c9 |
children |
line wrap: on
line diff
--- a/code/Hierarchical Clustering.ipynb Mon Jan 16 17:34:29 2017 +0000 +++ b/code/Hierarchical Clustering.ipynb Tue Jan 24 17:44:45 2017 +0000 @@ -11,6 +11,7 @@ "from matplotlib import pyplot as plt\n", "from scipy.cluster.hierarchy import dendrogram, linkage, cophenet\n", "from scipy.spatial.distance import pdist\n", + "import sklearn \n", "import numpy as np\n", "import csv\n", "\n", @@ -41,9 +42,9 @@ }, "outputs": [], "source": [ - "print X.shape\n", - "print filenames.shape\n", - "print features.shape" + "agglo = cluster.FeatureAgglomeration()\n", + "agglo.fit(X)\n", + "X_reduced = agglo.transform(X)" ] }, { @@ -59,6 +60,121 @@ }, { "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 8.51810000e-01 4.00000000e-06 2.46000000e-04 ..., 2.10260000e-02\n", + " 1.98220000e-02 1.04000000e-04]\n", + " [ 9.52275000e-01 7.00000000e-06 1.82600000e-03 ..., 1.79490000e-02\n", + " 1.09020000e-02 7.20000000e-05]\n", + " [ 1.92200000e-03 1.00000000e-06 1.39000000e-04 ..., 2.35900000e-02\n", + " 6.93800000e-03 2.61000000e-04]\n", + " ..., \n", + " [ 9.96346000e-01 3.37000000e-04 1.23600000e-03 ..., 5.24103000e-01\n", + " 3.36967000e-01 5.39000000e-04]\n", + " [ 9.99990000e-01 1.00000000e-06 0.00000000e+00 ..., 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [ 9.96624000e-01 6.97000000e-04 2.59300000e-03 ..., 5.24615000e-01\n", + " 3.34985000e-01 5.45000000e-04]]\n" + ] + } + ], + "source": [ + "print X" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(8977, 1536)\n" + ] + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'nu_0': 0, 'kappa_0': 0, 'lambda_0': 0, 'mu_0': 0}\n" + ] + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import pyBHC as bhc\n", + "from pyBHC import dists\n", + "\n", + "mu_init = []\n", + "sigma_init = []\n", + "S_init = []\n", + "cd = dists.NormalFixedCovar(mu_0=mu_init,sigma_0=sigma_init, S=S_init)\n", + "\n", + "# temp = cd.log_marginal_likelihood(X)\n", + "d = bhc.rbhc(X, cd)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true