comparison code/treeLinkFeatures.m @ 32:4bdcab1e821c

tidy up directory
author DaveM
date Wed, 15 Mar 2017 11:33:55 +0000
parents phase2/treeLinkFeatures.m@55813e99c6cf
children
comparison
equal deleted inserted replaced
31:55813e99c6cf 32:4bdcab1e821c
1 function [linkList, featureList]= treeLinkFeatures(data, depthThresh, featureNames)
2 %% [linkList, featureList]= treeLinkFeatures(data, depthThresh, featureNames)
3 % given a dataset, a hierarchical cluster of the data is produced, and then
4 % the data is traversed, such that, for each split in the data, a set of
5 % features are produced, which are the ranked features that can be used to
6 % separate the given dataset at that point.
7 % data is the nxm matrix of content, n is the number of samples and m is
8 % the number of features.
9 % depthThresh is a list of the range of tree depths to traverse from the
10 % aglomerative clustering tree. A single value of depthThresh, will assume
11 % 1:depthThresh. For analysis of a single layer of the tree, pass a list of
12 % two values, both of which are the layer to be analysed.
13 % feature names is the list of features, so that grown trees have suitable
14 % names. No feature names will result in the feature number being returned.
15 % featureList corresponds to the rows in linkList, with the form column 1
16 % is the 5 most relevant features, column 2 is the depth and column 3 is a
17 % decision classification tree for the decision - perhaps this should be in
18 % the form of a struct instead?
19
20
21
22 if(nargin < 3)
23 featureNames = 1:size(data,2);
24 end
25 if(nargin < 2)
26 depthThresh = 999;
27 end
28
29 if (length(depthThresh) == 1)
30 depthThresh = 1:depthThresh;
31 end
32
33 linkList = aglomCluster(data);
34 linkList = depthCheck(linkList);
35 listSize = size(data,1);
36
37 % linkList(:,4) = 0;
38 featureList = cell(listSize-1,3);
39 currentRow = [2*listSize-1];
40
41 %%
42 while (~isempty(currentRow))
43 if(currentRow(1) > listSize)
44 row = currentRow(1) - listSize
45 % rD = linkList(row,4);
46 if any(linkList(row,4)==depthThresh)
47 classList = traceLinkageToBinary(linkList, row);
48 featureList{row,1} = rfFeatureSelection(data(classList>0,:), classList(classList>0));
49 featureList{row,2} = linkList(row,4);
50 featureList{row,3} = fitctree(data(classList>0,featureList{row,1}),classList(classList>0),'PredictorNames',featureNames(featureList{row,1}));
51 end
52 currentRow = [currentRow; linkList(row,1); linkList(row,2)];
53 end
54 currentRow = currentRow(2:end);
55 save('partialResults.mat');
56 end
57
58 end