Chris@49: // Copyright (C) 2010-2012 NICTA (www.nicta.com.au) Chris@49: // Copyright (C) 2010-2012 Conrad Sanderson Chris@49: // Copyright (C) 2010 Dimitrios Bouzas Chris@49: // Copyright (C) 2011 Stanislav Funiak Chris@49: // Chris@49: // This Source Code Form is subject to the terms of the Mozilla Public Chris@49: // License, v. 2.0. If a copy of the MPL was not distributed with this Chris@49: // file, You can obtain one at http://mozilla.org/MPL/2.0/. Chris@49: Chris@49: Chris@49: //! \addtogroup op_princomp Chris@49: //! @{ Chris@49: Chris@49: Chris@49: Chris@49: //! \brief Chris@49: //! principal component analysis -- 4 arguments version Chris@49: //! computation is done via singular value decomposition Chris@49: //! coeff_out -> principal component coefficients Chris@49: //! score_out -> projected samples Chris@49: //! latent_out -> eigenvalues of principal vectors Chris@49: //! tsquared_out -> Hotelling's T^2 statistic Chris@49: template Chris@49: inline Chris@49: bool Chris@49: op_princomp::direct_princomp Chris@49: ( Chris@49: Mat& coeff_out, Chris@49: Mat& score_out, Chris@49: Col& latent_out, Chris@49: Col& tsquared_out, Chris@49: const Base& X, Chris@49: const typename arma_not_cx::result* junk Chris@49: ) Chris@49: { Chris@49: arma_extra_debug_sigprint(); Chris@49: arma_ignore(junk); Chris@49: Chris@49: typedef typename T1::elem_type eT; Chris@49: Chris@49: const unwrap_check Y( X.get_ref(), score_out ); Chris@49: const Mat& in = Y.M; Chris@49: Chris@49: const uword n_rows = in.n_rows; Chris@49: const uword n_cols = in.n_cols; Chris@49: Chris@49: if(n_rows > 1) // more than one sample Chris@49: { Chris@49: // subtract the mean - use score_out as temporary matrix Chris@49: score_out = in - repmat(mean(in), n_rows, 1); Chris@49: Chris@49: // singular value decomposition Chris@49: Mat U; Chris@49: Col s; Chris@49: Chris@49: const bool svd_ok = svd(U,s,coeff_out,score_out); Chris@49: Chris@49: if(svd_ok == false) Chris@49: { Chris@49: return false; Chris@49: } Chris@49: Chris@49: Chris@49: //U.reset(); // TODO: do we need this ? U will get automatically deleted anyway Chris@49: Chris@49: // normalize the eigenvalues Chris@49: s /= std::sqrt( double(n_rows - 1) ); Chris@49: Chris@49: // project the samples to the principals Chris@49: score_out *= coeff_out; Chris@49: Chris@49: if(n_rows <= n_cols) // number of samples is less than their dimensionality Chris@49: { Chris@49: score_out.cols(n_rows-1,n_cols-1).zeros(); Chris@49: Chris@49: //Col s_tmp = zeros< Col >(n_cols); Chris@49: Col s_tmp(n_cols); Chris@49: s_tmp.zeros(); Chris@49: Chris@49: s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); Chris@49: s = s_tmp; Chris@49: Chris@49: // compute the Hotelling's T-squared Chris@49: s_tmp.rows(0,n_rows-2) = eT(1) / s_tmp.rows(0,n_rows-2); Chris@49: Chris@49: const Mat S = score_out * diagmat(Col(s_tmp)); Chris@49: tsquared_out = sum(S%S,1); Chris@49: } Chris@49: else Chris@49: { Chris@49: // compute the Hotelling's T-squared Chris@49: const Mat S = score_out * diagmat(Col( eT(1) / s)); Chris@49: tsquared_out = sum(S%S,1); Chris@49: } Chris@49: Chris@49: // compute the eigenvalues of the principal vectors Chris@49: latent_out = s%s; Chris@49: } Chris@49: else // 0 or 1 samples Chris@49: { Chris@49: coeff_out.eye(n_cols, n_cols); Chris@49: Chris@49: score_out.copy_size(in); Chris@49: score_out.zeros(); Chris@49: Chris@49: latent_out.set_size(n_cols); Chris@49: latent_out.zeros(); Chris@49: Chris@49: tsquared_out.set_size(n_rows); Chris@49: tsquared_out.zeros(); Chris@49: } Chris@49: Chris@49: return true; Chris@49: } Chris@49: Chris@49: Chris@49: Chris@49: //! \brief Chris@49: //! principal component analysis -- 3 arguments version Chris@49: //! computation is done via singular value decomposition Chris@49: //! coeff_out -> principal component coefficients Chris@49: //! score_out -> projected samples Chris@49: //! latent_out -> eigenvalues of principal vectors Chris@49: template Chris@49: inline Chris@49: bool Chris@49: op_princomp::direct_princomp Chris@49: ( Chris@49: Mat& coeff_out, Chris@49: Mat& score_out, Chris@49: Col& latent_out, Chris@49: const Base& X, Chris@49: const typename arma_not_cx::result* junk Chris@49: ) Chris@49: { Chris@49: arma_extra_debug_sigprint(); Chris@49: arma_ignore(junk); Chris@49: Chris@49: typedef typename T1::elem_type eT; Chris@49: Chris@49: const unwrap_check Y( X.get_ref(), score_out ); Chris@49: const Mat& in = Y.M; Chris@49: Chris@49: const uword n_rows = in.n_rows; Chris@49: const uword n_cols = in.n_cols; Chris@49: Chris@49: if(n_rows > 1) // more than one sample Chris@49: { Chris@49: // subtract the mean - use score_out as temporary matrix Chris@49: score_out = in - repmat(mean(in), n_rows, 1); Chris@49: Chris@49: // singular value decomposition Chris@49: Mat U; Chris@49: Col s; Chris@49: Chris@49: const bool svd_ok = svd(U,s,coeff_out,score_out); Chris@49: Chris@49: if(svd_ok == false) Chris@49: { Chris@49: return false; Chris@49: } Chris@49: Chris@49: Chris@49: // U.reset(); Chris@49: Chris@49: // normalize the eigenvalues Chris@49: s /= std::sqrt( double(n_rows - 1) ); Chris@49: Chris@49: // project the samples to the principals Chris@49: score_out *= coeff_out; Chris@49: Chris@49: if(n_rows <= n_cols) // number of samples is less than their dimensionality Chris@49: { Chris@49: score_out.cols(n_rows-1,n_cols-1).zeros(); Chris@49: Chris@49: Col s_tmp = zeros< Col >(n_cols); Chris@49: s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); Chris@49: s = s_tmp; Chris@49: } Chris@49: Chris@49: // compute the eigenvalues of the principal vectors Chris@49: latent_out = s%s; Chris@49: Chris@49: } Chris@49: else // 0 or 1 samples Chris@49: { Chris@49: coeff_out.eye(n_cols, n_cols); Chris@49: Chris@49: score_out.copy_size(in); Chris@49: score_out.zeros(); Chris@49: Chris@49: latent_out.set_size(n_cols); Chris@49: latent_out.zeros(); Chris@49: } Chris@49: Chris@49: return true; Chris@49: } Chris@49: Chris@49: Chris@49: Chris@49: //! \brief Chris@49: //! principal component analysis -- 2 arguments version Chris@49: //! computation is done via singular value decomposition Chris@49: //! coeff_out -> principal component coefficients Chris@49: //! score_out -> projected samples Chris@49: template Chris@49: inline Chris@49: bool Chris@49: op_princomp::direct_princomp Chris@49: ( Chris@49: Mat& coeff_out, Chris@49: Mat& score_out, Chris@49: const Base& X, Chris@49: const typename arma_not_cx::result* junk Chris@49: ) Chris@49: { Chris@49: arma_extra_debug_sigprint(); Chris@49: arma_ignore(junk); Chris@49: Chris@49: typedef typename T1::elem_type eT; Chris@49: Chris@49: const unwrap_check Y( X.get_ref(), score_out ); Chris@49: const Mat& in = Y.M; Chris@49: Chris@49: const uword n_rows = in.n_rows; Chris@49: const uword n_cols = in.n_cols; Chris@49: Chris@49: if(n_rows > 1) // more than one sample Chris@49: { Chris@49: // subtract the mean - use score_out as temporary matrix Chris@49: score_out = in - repmat(mean(in), n_rows, 1); Chris@49: Chris@49: // singular value decomposition Chris@49: Mat U; Chris@49: Col s; Chris@49: Chris@49: const bool svd_ok = svd(U,s,coeff_out,score_out); Chris@49: Chris@49: if(svd_ok == false) Chris@49: { Chris@49: return false; Chris@49: } Chris@49: Chris@49: // U.reset(); Chris@49: Chris@49: // normalize the eigenvalues Chris@49: s /= std::sqrt( double(n_rows - 1) ); Chris@49: Chris@49: // project the samples to the principals Chris@49: score_out *= coeff_out; Chris@49: Chris@49: if(n_rows <= n_cols) // number of samples is less than their dimensionality Chris@49: { Chris@49: score_out.cols(n_rows-1,n_cols-1).zeros(); Chris@49: Chris@49: Col s_tmp = zeros< Col >(n_cols); Chris@49: s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); Chris@49: s = s_tmp; Chris@49: } Chris@49: } Chris@49: else // 0 or 1 samples Chris@49: { Chris@49: coeff_out.eye(n_cols, n_cols); Chris@49: score_out.copy_size(in); Chris@49: score_out.zeros(); Chris@49: } Chris@49: Chris@49: return true; Chris@49: } Chris@49: Chris@49: Chris@49: Chris@49: //! \brief Chris@49: //! principal component analysis -- 1 argument version Chris@49: //! computation is done via singular value decomposition Chris@49: //! coeff_out -> principal component coefficients Chris@49: template Chris@49: inline Chris@49: bool Chris@49: op_princomp::direct_princomp Chris@49: ( Chris@49: Mat& coeff_out, Chris@49: const Base& X, Chris@49: const typename arma_not_cx::result* junk Chris@49: ) Chris@49: { Chris@49: arma_extra_debug_sigprint(); Chris@49: arma_ignore(junk); Chris@49: Chris@49: typedef typename T1::elem_type eT; Chris@49: Chris@49: const unwrap Y( X.get_ref() ); Chris@49: const Mat& in = Y.M; Chris@49: Chris@49: if(in.n_elem != 0) Chris@49: { Chris@49: // singular value decomposition Chris@49: Mat U; Chris@49: Col s; Chris@49: Chris@49: const Mat tmp = in - repmat(mean(in), in.n_rows, 1); Chris@49: Chris@49: const bool svd_ok = svd(U,s,coeff_out, tmp); Chris@49: Chris@49: if(svd_ok == false) Chris@49: { Chris@49: return false; Chris@49: } Chris@49: } Chris@49: else Chris@49: { Chris@49: coeff_out.eye(in.n_cols, in.n_cols); Chris@49: } Chris@49: Chris@49: return true; Chris@49: } Chris@49: Chris@49: Chris@49: Chris@49: //! \brief Chris@49: //! principal component analysis -- 4 arguments complex version Chris@49: //! computation is done via singular value decomposition Chris@49: //! coeff_out -> principal component coefficients Chris@49: //! score_out -> projected samples Chris@49: //! latent_out -> eigenvalues of principal vectors Chris@49: //! tsquared_out -> Hotelling's T^2 statistic Chris@49: template Chris@49: inline Chris@49: bool Chris@49: op_princomp::direct_princomp Chris@49: ( Chris@49: Mat< std::complex >& coeff_out, Chris@49: Mat< std::complex >& score_out, Chris@49: Col< typename T1::pod_type >& latent_out, Chris@49: Col< std::complex >& tsquared_out, Chris@49: const Base< std::complex, T1 >& X, Chris@49: const typename arma_cx_only::result* junk Chris@49: ) Chris@49: { Chris@49: arma_extra_debug_sigprint(); Chris@49: arma_ignore(junk); Chris@49: Chris@49: typedef typename T1::pod_type T; Chris@49: typedef std::complex eT; Chris@49: Chris@49: const unwrap_check Y( X.get_ref(), score_out ); Chris@49: const Mat& in = Y.M; Chris@49: Chris@49: const uword n_rows = in.n_rows; Chris@49: const uword n_cols = in.n_cols; Chris@49: Chris@49: if(n_rows > 1) // more than one sample Chris@49: { Chris@49: // subtract the mean - use score_out as temporary matrix Chris@49: score_out = in - repmat(mean(in), n_rows, 1); Chris@49: Chris@49: // singular value decomposition Chris@49: Mat U; Chris@49: Col s; Chris@49: Chris@49: const bool svd_ok = svd(U,s,coeff_out,score_out); Chris@49: Chris@49: if(svd_ok == false) Chris@49: { Chris@49: return false; Chris@49: } Chris@49: Chris@49: Chris@49: //U.reset(); Chris@49: Chris@49: // normalize the eigenvalues Chris@49: s /= std::sqrt( double(n_rows - 1) ); Chris@49: Chris@49: // project the samples to the principals Chris@49: score_out *= coeff_out; Chris@49: Chris@49: if(n_rows <= n_cols) // number of samples is less than their dimensionality Chris@49: { Chris@49: score_out.cols(n_rows-1,n_cols-1).zeros(); Chris@49: Chris@49: Col s_tmp = zeros< Col >(n_cols); Chris@49: s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); Chris@49: s = s_tmp; Chris@49: Chris@49: // compute the Hotelling's T-squared Chris@49: s_tmp.rows(0,n_rows-2) = 1.0 / s_tmp.rows(0,n_rows-2); Chris@49: const Mat S = score_out * diagmat(Col(s_tmp)); Chris@49: tsquared_out = sum(S%S,1); Chris@49: } Chris@49: else Chris@49: { Chris@49: // compute the Hotelling's T-squared Chris@49: const Mat S = score_out * diagmat(Col(T(1) / s)); Chris@49: tsquared_out = sum(S%S,1); Chris@49: } Chris@49: Chris@49: // compute the eigenvalues of the principal vectors Chris@49: latent_out = s%s; Chris@49: Chris@49: } Chris@49: else // 0 or 1 samples Chris@49: { Chris@49: coeff_out.eye(n_cols, n_cols); Chris@49: Chris@49: score_out.copy_size(in); Chris@49: score_out.zeros(); Chris@49: Chris@49: latent_out.set_size(n_cols); Chris@49: latent_out.zeros(); Chris@49: Chris@49: tsquared_out.set_size(n_rows); Chris@49: tsquared_out.zeros(); Chris@49: } Chris@49: Chris@49: return true; Chris@49: } Chris@49: Chris@49: Chris@49: Chris@49: //! \brief Chris@49: //! principal component analysis -- 3 arguments complex version Chris@49: //! computation is done via singular value decomposition Chris@49: //! coeff_out -> principal component coefficients Chris@49: //! score_out -> projected samples Chris@49: //! latent_out -> eigenvalues of principal vectors Chris@49: template Chris@49: inline Chris@49: bool Chris@49: op_princomp::direct_princomp Chris@49: ( Chris@49: Mat< std::complex >& coeff_out, Chris@49: Mat< std::complex >& score_out, Chris@49: Col< typename T1::pod_type >& latent_out, Chris@49: const Base< std::complex, T1 >& X, Chris@49: const typename arma_cx_only::result* junk Chris@49: ) Chris@49: { Chris@49: arma_extra_debug_sigprint(); Chris@49: arma_ignore(junk); Chris@49: Chris@49: typedef typename T1::pod_type T; Chris@49: typedef std::complex eT; Chris@49: Chris@49: const unwrap_check Y( X.get_ref(), score_out ); Chris@49: const Mat& in = Y.M; Chris@49: Chris@49: const uword n_rows = in.n_rows; Chris@49: const uword n_cols = in.n_cols; Chris@49: Chris@49: if(n_rows > 1) // more than one sample Chris@49: { Chris@49: // subtract the mean - use score_out as temporary matrix Chris@49: score_out = in - repmat(mean(in), n_rows, 1); Chris@49: Chris@49: // singular value decomposition Chris@49: Mat U; Chris@49: Col< T> s; Chris@49: Chris@49: const bool svd_ok = svd(U,s,coeff_out,score_out); Chris@49: Chris@49: if(svd_ok == false) Chris@49: { Chris@49: return false; Chris@49: } Chris@49: Chris@49: Chris@49: // U.reset(); Chris@49: Chris@49: // normalize the eigenvalues Chris@49: s /= std::sqrt( double(n_rows - 1) ); Chris@49: Chris@49: // project the samples to the principals Chris@49: score_out *= coeff_out; Chris@49: Chris@49: if(n_rows <= n_cols) // number of samples is less than their dimensionality Chris@49: { Chris@49: score_out.cols(n_rows-1,n_cols-1).zeros(); Chris@49: Chris@49: Col s_tmp = zeros< Col >(n_cols); Chris@49: s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); Chris@49: s = s_tmp; Chris@49: } Chris@49: Chris@49: // compute the eigenvalues of the principal vectors Chris@49: latent_out = s%s; Chris@49: Chris@49: } Chris@49: else // 0 or 1 samples Chris@49: { Chris@49: coeff_out.eye(n_cols, n_cols); Chris@49: Chris@49: score_out.copy_size(in); Chris@49: score_out.zeros(); Chris@49: Chris@49: latent_out.set_size(n_cols); Chris@49: latent_out.zeros(); Chris@49: } Chris@49: Chris@49: return true; Chris@49: } Chris@49: Chris@49: Chris@49: Chris@49: //! \brief Chris@49: //! principal component analysis -- 2 arguments complex version Chris@49: //! computation is done via singular value decomposition Chris@49: //! coeff_out -> principal component coefficients Chris@49: //! score_out -> projected samples Chris@49: template Chris@49: inline Chris@49: bool Chris@49: op_princomp::direct_princomp Chris@49: ( Chris@49: Mat< std::complex >& coeff_out, Chris@49: Mat< std::complex >& score_out, Chris@49: const Base< std::complex, T1 >& X, Chris@49: const typename arma_cx_only::result* junk Chris@49: ) Chris@49: { Chris@49: arma_extra_debug_sigprint(); Chris@49: arma_ignore(junk); Chris@49: Chris@49: typedef typename T1::pod_type T; Chris@49: typedef std::complex eT; Chris@49: Chris@49: const unwrap_check Y( X.get_ref(), score_out ); Chris@49: const Mat& in = Y.M; Chris@49: Chris@49: const uword n_rows = in.n_rows; Chris@49: const uword n_cols = in.n_cols; Chris@49: Chris@49: if(n_rows > 1) // more than one sample Chris@49: { Chris@49: // subtract the mean - use score_out as temporary matrix Chris@49: score_out = in - repmat(mean(in), n_rows, 1); Chris@49: Chris@49: // singular value decomposition Chris@49: Mat U; Chris@49: Col< T> s; Chris@49: Chris@49: const bool svd_ok = svd(U,s,coeff_out,score_out); Chris@49: Chris@49: if(svd_ok == false) Chris@49: { Chris@49: return false; Chris@49: } Chris@49: Chris@49: // U.reset(); Chris@49: Chris@49: // normalize the eigenvalues Chris@49: s /= std::sqrt( double(n_rows - 1) ); Chris@49: Chris@49: // project the samples to the principals Chris@49: score_out *= coeff_out; Chris@49: Chris@49: if(n_rows <= n_cols) // number of samples is less than their dimensionality Chris@49: { Chris@49: score_out.cols(n_rows-1,n_cols-1).zeros(); Chris@49: } Chris@49: Chris@49: } Chris@49: else // 0 or 1 samples Chris@49: { Chris@49: coeff_out.eye(n_cols, n_cols); Chris@49: Chris@49: score_out.copy_size(in); Chris@49: score_out.zeros(); Chris@49: } Chris@49: Chris@49: return true; Chris@49: } Chris@49: Chris@49: Chris@49: Chris@49: //! \brief Chris@49: //! principal component analysis -- 1 argument complex version Chris@49: //! computation is done via singular value decomposition Chris@49: //! coeff_out -> principal component coefficients Chris@49: template Chris@49: inline Chris@49: bool Chris@49: op_princomp::direct_princomp Chris@49: ( Chris@49: Mat< std::complex >& coeff_out, Chris@49: const Base< std::complex, T1 >& X, Chris@49: const typename arma_cx_only::result* junk Chris@49: ) Chris@49: { Chris@49: arma_extra_debug_sigprint(); Chris@49: arma_ignore(junk); Chris@49: Chris@49: typedef typename T1::pod_type T; Chris@49: typedef std::complex eT; Chris@49: Chris@49: const unwrap Y( X.get_ref() ); Chris@49: const Mat& in = Y.M; Chris@49: Chris@49: if(in.n_elem != 0) Chris@49: { Chris@49: // singular value decomposition Chris@49: Mat U; Chris@49: Col< T> s; Chris@49: Chris@49: const Mat tmp = in - repmat(mean(in), in.n_rows, 1); Chris@49: Chris@49: const bool svd_ok = svd(U,s,coeff_out, tmp); Chris@49: Chris@49: if(svd_ok == false) Chris@49: { Chris@49: return false; Chris@49: } Chris@49: } Chris@49: else Chris@49: { Chris@49: coeff_out.eye(in.n_cols, in.n_cols); Chris@49: } Chris@49: Chris@49: return true; Chris@49: } Chris@49: Chris@49: Chris@49: Chris@49: template Chris@49: inline Chris@49: void Chris@49: op_princomp::apply Chris@49: ( Chris@49: Mat& out, Chris@49: const Op& in Chris@49: ) Chris@49: { Chris@49: arma_extra_debug_sigprint(); Chris@49: Chris@49: typedef typename T1::elem_type eT; Chris@49: Chris@49: const unwrap_check tmp(in.m, out); Chris@49: const Mat& A = tmp.M; Chris@49: Chris@49: const bool status = op_princomp::direct_princomp(out, A); Chris@49: Chris@49: if(status == false) Chris@49: { Chris@49: out.reset(); Chris@49: Chris@49: arma_bad("princomp(): failed to converge"); Chris@49: } Chris@49: } Chris@49: Chris@49: Chris@49: Chris@49: //! @}