Chris@49: #include Chris@49: Chris@49: #include "armadillo" Chris@49: Chris@49: using namespace arma; Chris@49: using namespace std; Chris@49: Chris@49: Chris@49: int main(int argc, char** argv) Chris@49: { Chris@49: cout << "Armadillo version: " << arma_version::as_string() << endl; Chris@49: Chris@49: // directly specify the matrix size (elements are uninitialised) Chris@49: mat A(2,3); Chris@49: Chris@49: // .n_rows = number of rows (read only) Chris@49: // .n_cols = number of columns (read only) Chris@49: cout << "A.n_rows = " << A.n_rows << endl; Chris@49: cout << "A.n_cols = " << A.n_cols << endl; Chris@49: Chris@49: // directly access an element (indexing starts at 0) Chris@49: A(1,2) = 456.0; Chris@49: Chris@49: A.print("A:"); Chris@49: Chris@49: // scalars are treated as a 1x1 matrix, Chris@49: // hence the code below will set A to have a size of 1x1 Chris@49: A = 5.0; Chris@49: A.print("A:"); Chris@49: Chris@49: // if you want a matrix with all elements set to a particular value Chris@49: // the .fill() member function can be used Chris@49: A.set_size(3,3); Chris@49: A.fill(5.0); Chris@49: A.print("A:"); Chris@49: Chris@49: Chris@49: mat B; Chris@49: Chris@49: // endr indicates "end of row" Chris@49: B << 0.555950 << 0.274690 << 0.540605 << 0.798938 << endr Chris@49: << 0.108929 << 0.830123 << 0.891726 << 0.895283 << endr Chris@49: << 0.948014 << 0.973234 << 0.216504 << 0.883152 << endr Chris@49: << 0.023787 << 0.675382 << 0.231751 << 0.450332 << endr; Chris@49: Chris@49: // print to the cout stream Chris@49: // with an optional string before the contents of the matrix Chris@49: B.print("B:"); Chris@49: Chris@49: // the << operator can also be used to print the matrix Chris@49: // to an arbitrary stream (cout in this case) Chris@49: cout << "B:" << endl << B << endl; Chris@49: Chris@49: // save to disk Chris@49: B.save("B.txt", raw_ascii); Chris@49: Chris@49: // load from disk Chris@49: mat C; Chris@49: C.load("B.txt"); Chris@49: Chris@49: C += 2.0 * B; Chris@49: C.print("C:"); Chris@49: Chris@49: Chris@49: // submatrix types: Chris@49: // Chris@49: // .submat(first_row, first_column, last_row, last_column) Chris@49: // .row(row_number) Chris@49: // .col(column_number) Chris@49: // .cols(first_column, last_column) Chris@49: // .rows(first_row, last_row) Chris@49: Chris@49: cout << "C.submat(0,0,3,1) =" << endl; Chris@49: cout << C.submat(0,0,3,1) << endl; Chris@49: Chris@49: // generate the identity matrix Chris@49: mat D = eye(4,4); Chris@49: Chris@49: D.submat(0,0,3,1) = C.cols(1,2); Chris@49: D.print("D:"); Chris@49: Chris@49: // transpose Chris@49: cout << "trans(B) =" << endl; Chris@49: cout << trans(B) << endl; Chris@49: Chris@49: // maximum from each column (traverse along rows) Chris@49: cout << "max(B) =" << endl; Chris@49: cout << max(B) << endl; Chris@49: Chris@49: // maximum from each row (traverse along columns) Chris@49: cout << "max(B,1) =" << endl; Chris@49: cout << max(B,1) << endl; Chris@49: Chris@49: // maximum value in B Chris@49: cout << "max(max(B)) = " << max(max(B)) << endl; Chris@49: Chris@49: // sum of each column (traverse along rows) Chris@49: cout << "sum(B) =" << endl; Chris@49: cout << sum(B) << endl; Chris@49: Chris@49: // sum of each row (traverse along columns) Chris@49: cout << "sum(B,1) =" << endl; Chris@49: cout << sum(B,1) << endl; Chris@49: Chris@49: // sum of all elements Chris@49: cout << "sum(sum(B)) = " << sum(sum(B)) << endl; Chris@49: cout << "accu(B) = " << accu(B) << endl; Chris@49: Chris@49: // trace = sum along diagonal Chris@49: cout << "trace(B) = " << trace(B) << endl; Chris@49: Chris@49: // random matrix -- values are uniformly distributed in the [0,1] interval Chris@49: mat E = randu(4,4); Chris@49: E.print("E:"); Chris@49: Chris@49: cout << endl; Chris@49: Chris@49: // row vectors are treated like a matrix with one row Chris@49: rowvec r; Chris@49: r << 0.59499 << 0.88807 << 0.88532 << 0.19968; Chris@49: r.print("r:"); Chris@49: Chris@49: // column vectors are treated like a matrix with one column Chris@49: colvec q; Chris@49: q << 0.81114 << 0.06256 << 0.95989 << 0.73628; Chris@49: q.print("q:"); Chris@49: Chris@49: // dot or inner product Chris@49: cout << "as_scalar(r*q) = " << as_scalar(r*q) << endl; Chris@49: Chris@49: Chris@49: // outer product Chris@49: cout << "q*r =" << endl; Chris@49: cout << q*r << endl; Chris@49: Chris@49: // multiply-and-accumulate operation Chris@49: // (no temporary matrices are created) Chris@49: cout << "accu(B % C) = " << accu(B % C) << endl; Chris@49: Chris@49: // sum of three matrices (no temporary matrices are created) Chris@49: mat F = B + C + D; Chris@49: F.print("F:"); Chris@49: Chris@49: // imat specifies an integer matrix Chris@49: imat AA; Chris@49: imat BB; Chris@49: Chris@49: AA << 1 << 2 << 3 << endr << 4 << 5 << 6 << endr << 7 << 8 << 9; Chris@49: BB << 3 << 2 << 1 << endr << 6 << 5 << 4 << endr << 9 << 8 << 7; Chris@49: Chris@49: // comparison of matrices (element-wise) Chris@49: // output of a relational operator is a umat Chris@49: umat ZZ = (AA >= BB); Chris@49: ZZ.print("ZZ ="); Chris@49: Chris@49: Chris@49: // 2D field of arbitrary length row vectors Chris@49: // (fields can also store abitrary objects, e.g. instances of std::string) Chris@49: field xyz(3,2); Chris@49: Chris@49: xyz(0,0) = randu(1,2); Chris@49: xyz(1,0) = randu(1,3); Chris@49: xyz(2,0) = randu(1,4); Chris@49: xyz(0,1) = randu(1,5); Chris@49: xyz(1,1) = randu(1,6); Chris@49: xyz(2,1) = randu(1,7); Chris@49: Chris@49: cout << "xyz:" << endl; Chris@49: cout << xyz << endl; Chris@49: Chris@49: Chris@49: // cubes ("3D matrices") Chris@49: cube Q( B.n_rows, B.n_cols, 2 ); Chris@49: Chris@49: Q.slice(0) = B; Chris@49: Q.slice(1) = 2.0 * B; Chris@49: Chris@49: Q.print("Q:"); Chris@49: Chris@49: Chris@49: return 0; Chris@49: } Chris@49: