max@0: // Copyright (C) 2008-2011 NICTA (www.nicta.com.au) max@0: // Copyright (C) 2008-2011 Conrad Sanderson max@0: // max@0: // This file is part of the Armadillo C++ library. max@0: // It is provided without any warranty of fitness max@0: // for any purpose. You can redistribute this file max@0: // and/or modify it under the terms of the GNU max@0: // Lesser General Public License (LGPL) as published max@0: // by the Free Software Foundation, either version 3 max@0: // of the License or (at your option) any later version. max@0: // (see http://www.opensource.org/licenses for more info) max@0: max@0: max@0: //! \addtogroup gemm_mixed max@0: //! @{ max@0: max@0: max@0: max@0: //! \brief max@0: //! Matrix multplication where the matrices have differing element types. max@0: //! Uses caching for speedup. max@0: //! Matrix 'C' is assumed to have been set to the correct size (i.e. taking into account transposes) max@0: max@0: template max@0: class gemm_mixed_large max@0: { max@0: public: max@0: max@0: template max@0: arma_hot max@0: inline max@0: static max@0: void max@0: apply max@0: ( max@0: Mat& C, max@0: const Mat& A, max@0: const Mat& B, max@0: const out_eT alpha = out_eT(1), max@0: const out_eT beta = out_eT(0) max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: const uword A_n_rows = A.n_rows; max@0: const uword A_n_cols = A.n_cols; max@0: max@0: const uword B_n_rows = B.n_rows; max@0: const uword B_n_cols = B.n_cols; max@0: max@0: if( (do_trans_A == false) && (do_trans_B == false) ) max@0: { max@0: podarray tmp(A_n_cols); max@0: in_eT1* A_rowdata = tmp.memptr(); max@0: max@0: for(uword row_A=0; row_A < A_n_rows; ++row_A) max@0: { max@0: tmp.copy_row(A, row_A); max@0: max@0: for(uword col_B=0; col_B < B_n_cols; ++col_B) max@0: { max@0: const in_eT2* B_coldata = B.colptr(col_B); max@0: max@0: out_eT acc = out_eT(0); max@0: for(uword i=0; i < B_n_rows; ++i) max@0: { max@0: acc += upgrade_val::apply(A_rowdata[i]) * upgrade_val::apply(B_coldata[i]); max@0: } max@0: max@0: if( (use_alpha == false) && (use_beta == false) ) max@0: { max@0: C.at(row_A,col_B) = acc; max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == false) ) max@0: { max@0: C.at(row_A,col_B) = alpha * acc; max@0: } max@0: else max@0: if( (use_alpha == false) && (use_beta == true) ) max@0: { max@0: C.at(row_A,col_B) = acc + beta*C.at(row_A,col_B); max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == true) ) max@0: { max@0: C.at(row_A,col_B) = alpha*acc + beta*C.at(row_A,col_B); max@0: } max@0: max@0: } max@0: } max@0: } max@0: else max@0: if( (do_trans_A == true) && (do_trans_B == false) ) max@0: { max@0: for(uword col_A=0; col_A < A_n_cols; ++col_A) max@0: { max@0: // col_A is interpreted as row_A when storing the results in matrix C max@0: max@0: const in_eT1* A_coldata = A.colptr(col_A); max@0: max@0: for(uword col_B=0; col_B < B_n_cols; ++col_B) max@0: { max@0: const in_eT2* B_coldata = B.colptr(col_B); max@0: max@0: out_eT acc = out_eT(0); max@0: for(uword i=0; i < B_n_rows; ++i) max@0: { max@0: acc += upgrade_val::apply(A_coldata[i]) * upgrade_val::apply(B_coldata[i]); max@0: } max@0: max@0: if( (use_alpha == false) && (use_beta == false) ) max@0: { max@0: C.at(col_A,col_B) = acc; max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == false) ) max@0: { max@0: C.at(col_A,col_B) = alpha * acc; max@0: } max@0: else max@0: if( (use_alpha == false) && (use_beta == true) ) max@0: { max@0: C.at(col_A,col_B) = acc + beta*C.at(col_A,col_B); max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == true) ) max@0: { max@0: C.at(col_A,col_B) = alpha*acc + beta*C.at(col_A,col_B); max@0: } max@0: max@0: } max@0: } max@0: } max@0: else max@0: if( (do_trans_A == false) && (do_trans_B == true) ) max@0: { max@0: Mat B_tmp; max@0: max@0: op_strans::apply_noalias(B_tmp, B); max@0: max@0: gemm_mixed_large::apply(C, A, B_tmp, alpha, beta); max@0: } max@0: else max@0: if( (do_trans_A == true) && (do_trans_B == true) ) max@0: { max@0: // mat B_tmp = trans(B); max@0: // dgemm_arma::apply(C, A, B_tmp, alpha, beta); max@0: max@0: max@0: // By using the trans(A)*trans(B) = trans(B*A) equivalency, max@0: // transpose operations are not needed max@0: max@0: podarray tmp(B_n_cols); max@0: in_eT2* B_rowdata = tmp.memptr(); max@0: max@0: for(uword row_B=0; row_B < B_n_rows; ++row_B) max@0: { max@0: tmp.copy_row(B, row_B); max@0: max@0: for(uword col_A=0; col_A < A_n_cols; ++col_A) max@0: { max@0: const in_eT1* A_coldata = A.colptr(col_A); max@0: max@0: out_eT acc = out_eT(0); max@0: for(uword i=0; i < A_n_rows; ++i) max@0: { max@0: acc += upgrade_val::apply(B_rowdata[i]) * upgrade_val::apply(A_coldata[i]); max@0: } max@0: max@0: if( (use_alpha == false) && (use_beta == false) ) max@0: { max@0: C.at(col_A,row_B) = acc; max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == false) ) max@0: { max@0: C.at(col_A,row_B) = alpha * acc; max@0: } max@0: else max@0: if( (use_alpha == false) && (use_beta == true) ) max@0: { max@0: C.at(col_A,row_B) = acc + beta*C.at(col_A,row_B); max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == true) ) max@0: { max@0: C.at(col_A,row_B) = alpha*acc + beta*C.at(col_A,row_B); max@0: } max@0: max@0: } max@0: } max@0: max@0: } max@0: } max@0: max@0: }; max@0: max@0: max@0: max@0: //! Matrix multplication where the matrices have different element types. max@0: //! Simple version (no caching). max@0: //! Matrix 'C' is assumed to have been set to the correct size (i.e. taking into account transposes) max@0: template max@0: class gemm_mixed_small max@0: { max@0: public: max@0: max@0: template max@0: arma_hot max@0: inline max@0: static max@0: void max@0: apply max@0: ( max@0: Mat& C, max@0: const Mat& A, max@0: const Mat& B, max@0: const out_eT alpha = out_eT(1), max@0: const out_eT beta = out_eT(0) max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: const uword A_n_rows = A.n_rows; max@0: const uword A_n_cols = A.n_cols; max@0: max@0: const uword B_n_rows = B.n_rows; max@0: const uword B_n_cols = B.n_cols; max@0: max@0: if( (do_trans_A == false) && (do_trans_B == false) ) max@0: { max@0: for(uword row_A = 0; row_A < A_n_rows; ++row_A) max@0: { max@0: for(uword col_B = 0; col_B < B_n_cols; ++col_B) max@0: { max@0: const in_eT2* B_coldata = B.colptr(col_B); max@0: max@0: out_eT acc = out_eT(0); max@0: for(uword i = 0; i < B_n_rows; ++i) max@0: { max@0: const out_eT val1 = upgrade_val::apply(A.at(row_A,i)); max@0: const out_eT val2 = upgrade_val::apply(B_coldata[i]); max@0: acc += val1 * val2; max@0: //acc += upgrade_val::apply(A.at(row_A,i)) * upgrade_val::apply(B_coldata[i]); max@0: } max@0: max@0: if( (use_alpha == false) && (use_beta == false) ) max@0: { max@0: C.at(row_A,col_B) = acc; max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == false) ) max@0: { max@0: C.at(row_A,col_B) = alpha * acc; max@0: } max@0: else max@0: if( (use_alpha == false) && (use_beta == true) ) max@0: { max@0: C.at(row_A,col_B) = acc + beta*C.at(row_A,col_B); max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == true) ) max@0: { max@0: C.at(row_A,col_B) = alpha*acc + beta*C.at(row_A,col_B); max@0: } max@0: } max@0: } max@0: } max@0: else max@0: if( (do_trans_A == true) && (do_trans_B == false) ) max@0: { max@0: for(uword col_A=0; col_A < A_n_cols; ++col_A) max@0: { max@0: // col_A is interpreted as row_A when storing the results in matrix C max@0: max@0: const in_eT1* A_coldata = A.colptr(col_A); max@0: max@0: for(uword col_B=0; col_B < B_n_cols; ++col_B) max@0: { max@0: const in_eT2* B_coldata = B.colptr(col_B); max@0: max@0: out_eT acc = out_eT(0); max@0: for(uword i=0; i < B_n_rows; ++i) max@0: { max@0: acc += upgrade_val::apply(A_coldata[i]) * upgrade_val::apply(B_coldata[i]); max@0: } max@0: max@0: if( (use_alpha == false) && (use_beta == false) ) max@0: { max@0: C.at(col_A,col_B) = acc; max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == false) ) max@0: { max@0: C.at(col_A,col_B) = alpha * acc; max@0: } max@0: else max@0: if( (use_alpha == false) && (use_beta == true) ) max@0: { max@0: C.at(col_A,col_B) = acc + beta*C.at(col_A,col_B); max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == true) ) max@0: { max@0: C.at(col_A,col_B) = alpha*acc + beta*C.at(col_A,col_B); max@0: } max@0: max@0: } max@0: } max@0: } max@0: else max@0: if( (do_trans_A == false) && (do_trans_B == true) ) max@0: { max@0: for(uword row_A = 0; row_A < A_n_rows; ++row_A) max@0: { max@0: for(uword row_B = 0; row_B < B_n_rows; ++row_B) max@0: { max@0: out_eT acc = out_eT(0); max@0: for(uword i = 0; i < B_n_cols; ++i) max@0: { max@0: acc += upgrade_val::apply(A.at(row_A,i)) * upgrade_val::apply(B.at(row_B,i)); max@0: } max@0: max@0: if( (use_alpha == false) && (use_beta == false) ) max@0: { max@0: C.at(row_A,row_B) = acc; max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == false) ) max@0: { max@0: C.at(row_A,row_B) = alpha * acc; max@0: } max@0: else max@0: if( (use_alpha == false) && (use_beta == true) ) max@0: { max@0: C.at(row_A,row_B) = acc + beta*C.at(row_A,row_B); max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == true) ) max@0: { max@0: C.at(row_A,row_B) = alpha*acc + beta*C.at(row_A,row_B); max@0: } max@0: } max@0: } max@0: } max@0: else max@0: if( (do_trans_A == true) && (do_trans_B == true) ) max@0: { max@0: for(uword row_B=0; row_B < B_n_rows; ++row_B) max@0: { max@0: max@0: for(uword col_A=0; col_A < A_n_cols; ++col_A) max@0: { max@0: const in_eT1* A_coldata = A.colptr(col_A); max@0: max@0: out_eT acc = out_eT(0); max@0: for(uword i=0; i < A_n_rows; ++i) max@0: { max@0: acc += upgrade_val::apply(B.at(row_B,i)) * upgrade_val::apply(A_coldata[i]); max@0: } max@0: max@0: if( (use_alpha == false) && (use_beta == false) ) max@0: { max@0: C.at(col_A,row_B) = acc; max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == false) ) max@0: { max@0: C.at(col_A,row_B) = alpha * acc; max@0: } max@0: else max@0: if( (use_alpha == false) && (use_beta == true) ) max@0: { max@0: C.at(col_A,row_B) = acc + beta*C.at(col_A,row_B); max@0: } max@0: else max@0: if( (use_alpha == true) && (use_beta == true) ) max@0: { max@0: C.at(col_A,row_B) = alpha*acc + beta*C.at(col_A,row_B); max@0: } max@0: max@0: } max@0: } max@0: max@0: } max@0: } max@0: max@0: }; max@0: max@0: max@0: max@0: max@0: max@0: //! \brief max@0: //! Matrix multplication where the matrices have differing element types. max@0: max@0: template max@0: class gemm_mixed max@0: { max@0: public: max@0: max@0: //! immediate multiplication of matrices A and B, storing the result in C max@0: template max@0: inline max@0: static max@0: void max@0: apply max@0: ( max@0: Mat& C, max@0: const Mat& A, max@0: const Mat& B, max@0: const out_eT alpha = out_eT(1), max@0: const out_eT beta = out_eT(0) max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: Mat tmp_A; max@0: Mat tmp_B; max@0: max@0: const bool predo_trans_A = ( (do_trans_A == true) && (is_complex::value == true) ); max@0: const bool predo_trans_B = ( (do_trans_B == true) && (is_complex::value == true) ); max@0: max@0: if(do_trans_A) max@0: { max@0: op_htrans::apply_noalias(tmp_A, A); max@0: } max@0: max@0: if(do_trans_B) max@0: { max@0: op_htrans::apply_noalias(tmp_B, B); max@0: } max@0: max@0: const Mat& AA = (predo_trans_A == false) ? A : tmp_A; max@0: const Mat& BB = (predo_trans_B == false) ? B : tmp_B; max@0: max@0: if( (AA.n_elem <= 64u) && (BB.n_elem <= 64u) ) max@0: { max@0: gemm_mixed_small<((predo_trans_A) ? false : do_trans_A), ((predo_trans_B) ? false : do_trans_B), use_alpha, use_beta>::apply(C, AA, BB, alpha, beta); max@0: } max@0: else max@0: { max@0: gemm_mixed_large<((predo_trans_A) ? false : do_trans_A), ((predo_trans_B) ? false : do_trans_B), use_alpha, use_beta>::apply(C, AA, BB, alpha, beta); max@0: } max@0: } max@0: max@0: max@0: }; max@0: max@0: max@0: max@0: //! @}