max@0: // Copyright (C) 2008-2010 NICTA (www.nicta.com.au) max@0: // Copyright (C) 2008-2010 Conrad Sanderson max@0: // max@0: // This file is part of the Armadillo C++ library. max@0: // It is provided without any warranty of fitness max@0: // for any purpose. You can redistribute this file max@0: // and/or modify it under the terms of the GNU max@0: // Lesser General Public License (LGPL) as published max@0: // by the Free Software Foundation, either version 3 max@0: // of the License or (at your option) any later version. max@0: // (see http://www.opensource.org/licenses for more info) max@0: max@0: max@0: //! \addtogroup op_cx_scalar max@0: //! @{ max@0: max@0: max@0: max@0: template max@0: inline max@0: void max@0: op_cx_scalar_times::apply max@0: ( max@0: Mat< typename std::complex >& out, max@0: const mtOp, T1, op_cx_scalar_times>& X max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: typedef typename std::complex eT; max@0: typedef typename T1::pod_type T; max@0: max@0: const Proxy A(X.m); max@0: max@0: out.set_size(A.get_n_rows(), A.get_n_cols()); max@0: max@0: const eT k = X.aux_out_eT; max@0: const uword n_elem = out.n_elem; max@0: eT* out_mem = out.memptr(); max@0: max@0: for(uword i=0; i max@0: inline max@0: void max@0: op_cx_scalar_plus::apply max@0: ( max@0: Mat< typename std::complex >& out, max@0: const mtOp, T1, op_cx_scalar_plus>& X max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: typedef typename std::complex eT; max@0: typedef typename T1::pod_type T; max@0: max@0: const Proxy A(X.m); max@0: max@0: out.set_size(A.get_n_rows(), A.get_n_cols()); max@0: max@0: const eT k = X.aux_out_eT; max@0: const uword n_elem = out.n_elem; max@0: eT* out_mem = out.memptr(); max@0: max@0: for(uword i=0; i max@0: inline max@0: void max@0: op_cx_scalar_minus_pre::apply max@0: ( max@0: Mat< typename std::complex >& out, max@0: const mtOp, T1, op_cx_scalar_minus_pre>& X max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: typedef typename std::complex eT; max@0: typedef typename T1::pod_type T; max@0: max@0: const Proxy A(X.m); max@0: max@0: out.set_size(A.get_n_rows(), A.get_n_cols()); max@0: max@0: const eT k = X.aux_out_eT; max@0: const uword n_elem = out.n_elem; max@0: eT* out_mem = out.memptr(); max@0: max@0: for(uword i=0; i max@0: inline max@0: void max@0: op_cx_scalar_minus_post::apply max@0: ( max@0: Mat< typename std::complex >& out, max@0: const mtOp, T1, op_cx_scalar_minus_post>& X max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: typedef typename std::complex eT; max@0: typedef typename T1::pod_type T; max@0: max@0: const Proxy A(X.m); max@0: max@0: out.set_size(A.get_n_rows(), A.get_n_cols()); max@0: max@0: const eT k = X.aux_out_eT; max@0: const uword n_elem = out.n_elem; max@0: eT* out_mem = out.memptr(); max@0: max@0: for(uword i=0; i max@0: inline max@0: void max@0: op_cx_scalar_div_pre::apply max@0: ( max@0: Mat< typename std::complex >& out, max@0: const mtOp, T1, op_cx_scalar_div_pre>& X max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: typedef typename std::complex eT; max@0: typedef typename T1::pod_type T; max@0: max@0: const Proxy A(X.m); max@0: max@0: out.set_size(A.get_n_rows(), A.get_n_cols()); max@0: max@0: const eT k = X.aux_out_eT; max@0: const uword n_elem = out.n_elem; max@0: eT* out_mem = out.memptr(); max@0: max@0: for(uword i=0; i max@0: inline max@0: void max@0: op_cx_scalar_div_post::apply max@0: ( max@0: Mat< typename std::complex >& out, max@0: const mtOp, T1, op_cx_scalar_div_post>& X max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: typedef typename std::complex eT; max@0: typedef typename T1::pod_type T; max@0: max@0: const Proxy A(X.m); max@0: max@0: out.set_size(A.get_n_rows(), A.get_n_cols()); max@0: max@0: const eT k = X.aux_out_eT; max@0: const uword n_elem = out.n_elem; max@0: eT* out_mem = out.memptr(); max@0: max@0: for(uword i=0; i max@0: inline max@0: void max@0: op_cx_scalar_times::apply max@0: ( max@0: Cube< typename std::complex >& out, max@0: const mtOpCube, T1, op_cx_scalar_times>& X max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: typedef typename std::complex eT; max@0: typedef typename T1::pod_type T; max@0: max@0: const ProxyCube A(X.m); max@0: max@0: out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices()); max@0: max@0: const eT k = X.aux_out_eT; max@0: const uword n_elem = out.n_elem; max@0: eT* out_mem = out.memptr(); max@0: max@0: for(uword i=0; i max@0: inline max@0: void max@0: op_cx_scalar_plus::apply max@0: ( max@0: Cube< typename std::complex >& out, max@0: const mtOpCube, T1, op_cx_scalar_plus>& X max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: typedef typename std::complex eT; max@0: typedef typename T1::pod_type T; max@0: max@0: const ProxyCube A(X.m); max@0: max@0: out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices()); max@0: max@0: const eT k = X.aux_out_eT; max@0: const uword n_elem = out.n_elem; max@0: eT* out_mem = out.memptr(); max@0: max@0: for(uword i=0; i max@0: inline max@0: void max@0: op_cx_scalar_minus_pre::apply max@0: ( max@0: Cube< typename std::complex >& out, max@0: const mtOpCube, T1, op_cx_scalar_minus_pre>& X max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: typedef typename std::complex eT; max@0: typedef typename T1::pod_type T; max@0: max@0: const ProxyCube A(X.m); max@0: max@0: out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices()); max@0: max@0: const eT k = X.aux_out_eT; max@0: const uword n_elem = out.n_elem; max@0: eT* out_mem = out.memptr(); max@0: max@0: for(uword i=0; i max@0: inline max@0: void max@0: op_cx_scalar_minus_post::apply max@0: ( max@0: Cube< typename std::complex >& out, max@0: const mtOpCube, T1, op_cx_scalar_minus_post>& X max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: typedef typename std::complex eT; max@0: typedef typename T1::pod_type T; max@0: max@0: const ProxyCube A(X.m); max@0: max@0: out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices()); max@0: max@0: const eT k = X.aux_out_eT; max@0: const uword n_elem = out.n_elem; max@0: eT* out_mem = out.memptr(); max@0: max@0: for(uword i=0; i max@0: inline max@0: void max@0: op_cx_scalar_div_pre::apply max@0: ( max@0: Cube< typename std::complex >& out, max@0: const mtOpCube, T1, op_cx_scalar_div_pre>& X max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: typedef typename std::complex eT; max@0: typedef typename T1::pod_type T; max@0: max@0: const ProxyCube A(X.m); max@0: max@0: out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices()); max@0: max@0: const eT k = X.aux_out_eT; max@0: const uword n_elem = out.n_elem; max@0: eT* out_mem = out.memptr(); max@0: max@0: for(uword i=0; i max@0: inline max@0: void max@0: op_cx_scalar_div_post::apply max@0: ( max@0: Cube< typename std::complex >& out, max@0: const mtOpCube, T1, op_cx_scalar_div_post>& X max@0: ) max@0: { max@0: arma_extra_debug_sigprint(); max@0: max@0: typedef typename std::complex eT; max@0: typedef typename T1::pod_type T; max@0: max@0: const ProxyCube A(X.m); max@0: max@0: out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices()); max@0: max@0: const eT k = X.aux_out_eT; max@0: const uword n_elem = out.n_elem; max@0: eT* out_mem = out.memptr(); max@0: max@0: for(uword i=0; i