Mercurial > hg > segmenter-vamp-plugin
view armadillo-2.4.4/include/armadillo_bits/op_princomp_meat.hpp @ 0:8b6102e2a9b0
Armadillo Library
author | maxzanoni76 <max.zanoni@eecs.qmul.ac.uk> |
---|---|
date | Wed, 11 Apr 2012 09:27:06 +0100 |
parents | |
children |
line wrap: on
line source
// Copyright (C) 2010-2011 NICTA (www.nicta.com.au) // Copyright (C) 2010-2011 Conrad Sanderson // Copyright (C) 2010 Dimitrios Bouzas // Copyright (C) 2011 Stanislav Funiak // // This file is part of the Armadillo C++ library. // It is provided without any warranty of fitness // for any purpose. You can redistribute this file // and/or modify it under the terms of the GNU // Lesser General Public License (LGPL) as published // by the Free Software Foundation, either version 3 // of the License or (at your option) any later version. // (see http://www.opensource.org/licenses for more info) //! \addtogroup op_princomp //! @{ //! \brief //! principal component analysis -- 4 arguments version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples //! latent_out -> eigenvalues of principal vectors //! tsquared_out -> Hotelling's T^2 statistic template<typename eT> inline bool op_princomp::direct_princomp ( Mat<eT>& coeff_out, Mat<eT>& score_out, Col<eT>& latent_out, Col<eT>& tsquared_out, const Mat<eT>& in ) { arma_extra_debug_sigprint(); const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in - repmat(mean(in), n_rows, 1); // singular value decomposition Mat<eT> U; Col<eT> s; const bool svd_ok = svd(U,s,coeff_out,score_out); if(svd_ok == false) { return false; } //U.reset(); // TODO: do we need this ? U will get automatically deleted anyway // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); //Col<eT> s_tmp = zeros< Col<eT> >(n_cols); Col<eT> s_tmp(n_cols); s_tmp.zeros(); s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); s = s_tmp; // compute the Hotelling's T-squared s_tmp.rows(0,n_rows-2) = eT(1) / s_tmp.rows(0,n_rows-2); const Mat<eT> S = score_out * diagmat(Col<eT>(s_tmp)); tsquared_out = sum(S%S,1); } else { // compute the Hotelling's T-squared const Mat<eT> S = score_out * diagmat(Col<eT>( eT(1) / s)); tsquared_out = sum(S%S,1); } // compute the eigenvalues of the principal vectors latent_out = s%s; } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); latent_out.set_size(n_cols); latent_out.zeros(); tsquared_out.set_size(n_rows); tsquared_out.zeros(); } return true; } //! \brief //! principal component analysis -- 3 arguments version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples //! latent_out -> eigenvalues of principal vectors template<typename eT> inline bool op_princomp::direct_princomp ( Mat<eT>& coeff_out, Mat<eT>& score_out, Col<eT>& latent_out, const Mat<eT>& in ) { arma_extra_debug_sigprint(); const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in - repmat(mean(in), n_rows, 1); // singular value decomposition Mat<eT> U; Col<eT> s; const bool svd_ok = svd(U,s,coeff_out,score_out); if(svd_ok == false) { return false; } // U.reset(); // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); Col<eT> s_tmp = zeros< Col<eT> >(n_cols); s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); s = s_tmp; } // compute the eigenvalues of the principal vectors latent_out = s%s; } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); latent_out.set_size(n_cols); latent_out.zeros(); } return true; } //! \brief //! principal component analysis -- 2 arguments version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples template<typename eT> inline bool op_princomp::direct_princomp ( Mat<eT>& coeff_out, Mat<eT>& score_out, const Mat<eT>& in ) { arma_extra_debug_sigprint(); const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in - repmat(mean(in), n_rows, 1); // singular value decomposition Mat<eT> U; Col<eT> s; const bool svd_ok = svd(U,s,coeff_out,score_out); if(svd_ok == false) { return false; } // U.reset(); // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); Col<eT> s_tmp = zeros< Col<eT> >(n_cols); s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); s = s_tmp; } } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); } return true; } //! \brief //! principal component analysis -- 1 argument version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients template<typename eT> inline bool op_princomp::direct_princomp ( Mat<eT>& coeff_out, const Mat<eT>& in ) { arma_extra_debug_sigprint(); if(in.n_elem != 0) { // singular value decomposition Mat<eT> U; Col<eT> s; const Mat<eT> tmp = in - repmat(mean(in), in.n_rows, 1); const bool svd_ok = svd(U,s,coeff_out, tmp); if(svd_ok == false) { return false; } } else { coeff_out.eye(in.n_cols, in.n_cols); } return true; } //! \brief //! principal component analysis -- 4 arguments complex version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples //! latent_out -> eigenvalues of principal vectors //! tsquared_out -> Hotelling's T^2 statistic template<typename T> inline bool op_princomp::direct_princomp ( Mat< std::complex<T> >& coeff_out, Mat< std::complex<T> >& score_out, Col<T>& latent_out, Col< std::complex<T> >& tsquared_out, const Mat< std::complex<T> >& in ) { arma_extra_debug_sigprint(); typedef std::complex<T> eT; const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in - repmat(mean(in), n_rows, 1); // singular value decomposition Mat<eT> U; Col<T> s; const bool svd_ok = svd(U,s,coeff_out,score_out); if(svd_ok == false) { return false; } //U.reset(); // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); Col<T> s_tmp = zeros< Col<T> >(n_cols); s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); s = s_tmp; // compute the Hotelling's T-squared s_tmp.rows(0,n_rows-2) = 1.0 / s_tmp.rows(0,n_rows-2); const Mat<eT> S = score_out * diagmat(Col<T>(s_tmp)); tsquared_out = sum(S%S,1); } else { // compute the Hotelling's T-squared const Mat<eT> S = score_out * diagmat(Col<T>(T(1) / s)); tsquared_out = sum(S%S,1); } // compute the eigenvalues of the principal vectors latent_out = s%s; } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); latent_out.set_size(n_cols); latent_out.zeros(); tsquared_out.set_size(n_rows); tsquared_out.zeros(); } return true; } //! \brief //! principal component analysis -- 3 arguments complex version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples //! latent_out -> eigenvalues of principal vectors template<typename T> inline bool op_princomp::direct_princomp ( Mat< std::complex<T> >& coeff_out, Mat< std::complex<T> >& score_out, Col<T>& latent_out, const Mat< std::complex<T> >& in ) { arma_extra_debug_sigprint(); typedef std::complex<T> eT; const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in - repmat(mean(in), n_rows, 1); // singular value decomposition Mat<eT> U; Col< T> s; const bool svd_ok = svd(U,s,coeff_out,score_out); if(svd_ok == false) { return false; } // U.reset(); // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); Col<T> s_tmp = zeros< Col<T> >(n_cols); s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); s = s_tmp; } // compute the eigenvalues of the principal vectors latent_out = s%s; } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); latent_out.set_size(n_cols); latent_out.zeros(); } return true; } //! \brief //! principal component analysis -- 2 arguments complex version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples template<typename T> inline bool op_princomp::direct_princomp ( Mat< std::complex<T> >& coeff_out, Mat< std::complex<T> >& score_out, const Mat< std::complex<T> >& in ) { arma_extra_debug_sigprint(); typedef std::complex<T> eT; const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in - repmat(mean(in), n_rows, 1); // singular value decomposition Mat<eT> U; Col< T> s; const bool svd_ok = svd(U,s,coeff_out,score_out); if(svd_ok == false) { return false; } // U.reset(); // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); } } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); } return true; } //! \brief //! principal component analysis -- 1 argument complex version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients template<typename T> inline bool op_princomp::direct_princomp ( Mat< std::complex<T> >& coeff_out, const Mat< std::complex<T> >& in ) { arma_extra_debug_sigprint(); typedef typename std::complex<T> eT; if(in.n_elem != 0) { // singular value decomposition Mat<eT> U; Col< T> s; const Mat<eT> tmp = in - repmat(mean(in), in.n_rows, 1); const bool svd_ok = svd(U,s,coeff_out, tmp); if(svd_ok == false) { return false; } } else { coeff_out.eye(in.n_cols, in.n_cols); } return true; } template<typename T1> inline void op_princomp::apply ( Mat<typename T1::elem_type>& out, const Op<T1,op_princomp>& in ) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const unwrap_check<T1> tmp(in.m, out); const Mat<eT>& A = tmp.M; const bool status = op_princomp::direct_princomp(out, A); if(status == false) { out.reset(); arma_bad("princomp(): failed to converge"); } } //! @}