Mercurial > hg > segmenter-vamp-plugin
view armadillo-2.4.4/include/armadillo_bits/auxlib_bones.hpp @ 0:8b6102e2a9b0
Armadillo Library
author | maxzanoni76 <max.zanoni@eecs.qmul.ac.uk> |
---|---|
date | Wed, 11 Apr 2012 09:27:06 +0100 |
parents | |
children |
line wrap: on
line source
// Copyright (C) 2008-2011 NICTA (www.nicta.com.au) // Copyright (C) 2008-2011 Conrad Sanderson // Copyright (C) 2009 Edmund Highcock // Copyright (C) 2011 James Sanders // // This file is part of the Armadillo C++ library. // It is provided without any warranty of fitness // for any purpose. You can redistribute this file // and/or modify it under the terms of the GNU // Lesser General Public License (LGPL) as published // by the Free Software Foundation, either version 3 // of the License or (at your option) any later version. // (see http://www.opensource.org/licenses for more info) //! \addtogroup auxlib //! @{ //! wrapper for accessing external functions defined in ATLAS, LAPACK or BLAS libraries class auxlib { public: template<const uword row, const uword col> struct pos { static const uword n2 = row + col*2; static const uword n3 = row + col*3; static const uword n4 = row + col*4; }; // // inv template<typename eT, typename T1> inline static bool inv(Mat<eT>& out, const Base<eT,T1>& X, const bool slow = false); template<typename eT> inline static bool inv(Mat<eT>& out, const Mat<eT>& A, const bool slow = false); template<typename eT> inline static bool inv_noalias_tinymat(Mat<eT>& out, const Mat<eT>& X, const uword N); template<typename eT> inline static bool inv_inplace_tinymat(Mat<eT>& out, const uword N); template<typename eT> inline static bool inv_inplace_lapack(Mat<eT>& out); // // inv_tr template<typename eT, typename T1> inline static bool inv_tr(Mat<eT>& out, const Base<eT,T1>& X, const uword layout); // // inv_sym template<typename eT, typename T1> inline static bool inv_sym(Mat<eT>& out, const Base<eT,T1>& X, const uword layout); // // inv_sympd template<typename eT, typename T1> inline static bool inv_sympd(Mat<eT>& out, const Base<eT,T1>& X, const uword layout); // // det template<typename eT, typename T1> inline static eT det(const Base<eT,T1>& X, const bool slow = false); template<typename eT> inline static eT det_tinymat(const Mat<eT>& X, const uword N); template<typename eT> inline static eT det_lapack(const Mat<eT>& X, const bool make_copy); // // log_det template<typename eT, typename T1> inline static bool log_det(eT& out_val, typename get_pod_type<eT>::result& out_sign, const Base<eT,T1>& X); // // lu template<typename eT, typename T1> inline static bool lu(Mat<eT>& L, Mat<eT>& U, podarray<blas_int>& ipiv, const Base<eT,T1>& X); template<typename eT, typename T1> inline static bool lu(Mat<eT>& L, Mat<eT>& U, Mat<eT>& P, const Base<eT,T1>& X); template<typename eT, typename T1> inline static bool lu(Mat<eT>& L, Mat<eT>& U, const Base<eT,T1>& X); // // eig template<typename eT, typename T1> inline static bool eig_sym(Col<eT>& eigval, const Base<eT,T1>& X); template<typename T, typename T1> inline static bool eig_sym(Col<T>& eigval, const Base<std::complex<T>,T1>& X); template<typename eT, typename T1> inline static bool eig_sym(Col<eT>& eigval, Mat<eT>& eigvec, const Base<eT,T1>& X); template<typename T, typename T1> inline static bool eig_sym(Col<T>& eigval, Mat< std::complex<T> >& eigvec, const Base<std::complex<T>,T1>& X); template<typename T, typename T1> inline static bool eig_gen(Col< std::complex<T> >& eigval, Mat<T>& l_eigvec, Mat<T>& r_eigvec, const Base<T,T1>& X, const char side); template<typename T, typename T1> inline static bool eig_gen(Col< std::complex<T> >& eigval, Mat< std::complex<T> >& l_eigvec, Mat< std::complex<T> >& r_eigvec, const Base< std::complex<T>, T1 >& X, const char side); // // chol template<typename eT, typename T1> inline static bool chol(Mat<eT>& out, const Base<eT,T1>& X); // // qr template<typename eT, typename T1> inline static bool qr(Mat<eT>& Q, Mat<eT>& R, const Base<eT,T1>& X); // // svd template<typename eT, typename T1> inline static bool svd(Col<eT>& S, const Base<eT,T1>& X, uword& n_rows, uword& n_cols); template<typename T, typename T1> inline static bool svd(Col<T>& S, const Base<std::complex<T>, T1>& X, uword& n_rows, uword& n_cols); template<typename eT, typename T1> inline static bool svd(Col<eT>& S, const Base<eT,T1>& X); template<typename T, typename T1> inline static bool svd(Col<T>& S, const Base<std::complex<T>, T1>& X); template<typename eT, typename T1> inline static bool svd(Mat<eT>& U, Col<eT>& S, Mat<eT>& V, const Base<eT,T1>& X); template<typename T, typename T1> inline static bool svd(Mat< std::complex<T> >& U, Col<T>& S, Mat< std::complex<T> >& V, const Base< std::complex<T>, T1>& X); template<typename eT, typename T1> inline static bool svd_econ(Mat<eT>& U, Col<eT>& S, Mat<eT>& V, const Base<eT,T1>& X, const char mode); template<typename T, typename T1> inline static bool svd_econ(Mat< std::complex<T> >& U, Col<T>& S, Mat< std::complex<T> >& V, const Base< std::complex<T>, T1>& X, const char mode); // // solve template<typename eT> inline static bool solve (Mat<eT>& out, Mat<eT>& A, const Mat<eT>& B, const bool slow = false); template<typename eT> inline static bool solve_od(Mat<eT>& out, Mat<eT>& A, const Mat<eT>& B); template<typename eT> inline static bool solve_ud(Mat<eT>& out, Mat<eT>& A, const Mat<eT>& B); // // solve_tr template<typename eT> inline static bool solve_tr(Mat<eT>& out, const Mat<eT>& A, const Mat<eT>& B, const uword layout); // // Schur decomposition template<typename eT> inline static bool schur_dec(Mat<eT>& Z, Mat<eT>& T, const Mat<eT>& A); template<typename cT> inline static bool schur_dec(Mat<std::complex<cT> >& Z, Mat<std::complex<cT> >& T, const Mat<std::complex<cT> >& A); // // syl (solution of the Sylvester equation AX + XB = C) template<typename eT> inline static bool syl(Mat<eT>& X, const Mat<eT>& A, const Mat<eT>& B, const Mat<eT>& C); // // lyap (solution of the continuous Lyapunov equation AX + XA^H + Q = 0) template<typename eT> inline static bool lyap(Mat<eT>& X, const Mat<eT>& A, const Mat<eT>& Q); // // dlyap (solution of the discrete Lyapunov equation AXA^H - X + Q = 0) template<typename eT> inline static bool dlyap(Mat<eT>& X, const Mat<eT>& A, const Mat<eT>& Q); }; //! @}