Mercurial > hg > segmenter-vamp-plugin
diff armadillo-2.4.4/include/armadillo_bits/running_stat_vec_meat.hpp @ 0:8b6102e2a9b0
Armadillo Library
author | maxzanoni76 <max.zanoni@eecs.qmul.ac.uk> |
---|---|
date | Wed, 11 Apr 2012 09:27:06 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/armadillo-2.4.4/include/armadillo_bits/running_stat_vec_meat.hpp Wed Apr 11 09:27:06 2012 +0100 @@ -0,0 +1,578 @@ +// Copyright (C) 2009-2011 NICTA (www.nicta.com.au) +// Copyright (C) 2009-2011 Conrad Sanderson +// +// This file is part of the Armadillo C++ library. +// It is provided without any warranty of fitness +// for any purpose. You can redistribute this file +// and/or modify it under the terms of the GNU +// Lesser General Public License (LGPL) as published +// by the Free Software Foundation, either version 3 +// of the License or (at your option) any later version. +// (see http://www.opensource.org/licenses for more info) + + +//! \addtogroup running_stat_vec +//! @{ + + + +template<typename eT> +running_stat_vec<eT>::~running_stat_vec() + { + arma_extra_debug_sigprint_this(this); + } + + + +template<typename eT> +running_stat_vec<eT>::running_stat_vec(const bool in_calc_cov) + : calc_cov(in_calc_cov) + { + arma_extra_debug_sigprint_this(this); + } + + + +template<typename eT> +running_stat_vec<eT>::running_stat_vec(const running_stat_vec<eT>& in_rsv) + : calc_cov (in_rsv.calc_cov) + , counter (in_rsv.counter) + , r_mean (in_rsv.r_mean) + , r_var (in_rsv.r_var) + , r_cov (in_rsv.r_cov) + , min_val (in_rsv.min_val) + , max_val (in_rsv.max_val) + , min_val_norm(in_rsv.min_val_norm) + , max_val_norm(in_rsv.max_val_norm) + { + arma_extra_debug_sigprint_this(this); + } + + + +template<typename eT> +const running_stat_vec<eT>& +running_stat_vec<eT>::operator=(const running_stat_vec<eT>& in_rsv) + { + arma_extra_debug_sigprint(); + + access::rw(calc_cov) = in_rsv.calc_cov; + + counter = in_rsv.counter; + r_mean = in_rsv.r_mean; + r_var = in_rsv.r_var; + r_cov = in_rsv.r_cov; + min_val = in_rsv.min_val; + max_val = in_rsv.max_val; + min_val_norm = in_rsv.min_val_norm; + max_val_norm = in_rsv.max_val_norm; + + return *this; + } + + + +//! update statistics to reflect new sample +template<typename eT> +template<typename T1> +arma_hot +inline +void +running_stat_vec<eT>::operator() (const Base<typename get_pod_type<eT>::result, T1>& X) + { + arma_extra_debug_sigprint(); + + //typedef typename get_pod_type<eT>::result T; + + const unwrap<T1> tmp(X.get_ref()); + const Mat<eT>& sample = tmp.M; + + if( sample.is_empty() ) + { + return; + } + + if( sample.is_finite() == false ) + { + arma_warn(true, "running_stat_vec: sample ignored as it has non-finite elements"); + return; + } + + running_stat_vec_aux::update_stats(*this, sample); + } + + + +//! update statistics to reflect new sample (version for complex numbers) +template<typename eT> +template<typename T1> +arma_hot +inline +void +running_stat_vec<eT>::operator() (const Base<std::complex<typename get_pod_type<eT>::result>, T1>& X) + { + arma_extra_debug_sigprint(); + + //typedef typename std::complex<typename get_pod_type<eT>::result> eT; + + const unwrap<T1> tmp(X.get_ref()); + const Mat<eT>& sample = tmp.M; + + if( sample.is_empty() ) + { + return; + } + + if( sample.is_finite() == false ) + { + arma_warn(true, "running_stat_vec: sample ignored as it has non-finite elements"); + return; + } + + running_stat_vec_aux::update_stats(*this, sample); + } + + + +//! set all statistics to zero +template<typename eT> +inline +void +running_stat_vec<eT>::reset() + { + arma_extra_debug_sigprint(); + + counter.reset(); + + r_mean.reset(); + r_var.reset(); + r_cov.reset(); + + min_val.reset(); + max_val.reset(); + + min_val_norm.reset(); + max_val_norm.reset(); + + r_var_dummy.reset(); + r_cov_dummy.reset(); + + tmp1.reset(); + tmp2.reset(); + } + + + +//! mean or average value +template<typename eT> +inline +const Mat<eT>& +running_stat_vec<eT>::mean() const + { + arma_extra_debug_sigprint(); + + return r_mean; + } + + + +//! variance +template<typename eT> +inline +const Mat<typename get_pod_type<eT>::result>& +running_stat_vec<eT>::var(const uword norm_type) + { + arma_extra_debug_sigprint(); + + const T N = counter.value(); + + if(N > T(1)) + { + if(norm_type == 0) + { + return r_var; + } + else + { + const T N_minus_1 = counter.value_minus_1(); + + r_var_dummy = (N_minus_1/N) * r_var; + + return r_var_dummy; + } + } + else + { + r_var_dummy.zeros(r_mean.n_rows, r_mean.n_cols); + + return r_var_dummy; + } + + } + + + +//! standard deviation +template<typename eT> +inline +Mat<typename get_pod_type<eT>::result> +running_stat_vec<eT>::stddev(const uword norm_type) const + { + arma_extra_debug_sigprint(); + + const T N = counter.value(); + + if(N > T(1)) + { + if(norm_type == 0) + { + return sqrt(r_var); + } + else + { + const T N_minus_1 = counter.value_minus_1(); + + return sqrt( (N_minus_1/N) * r_var ); + } + } + else + { + return Mat<T>(); + } + } + + + +//! covariance +template<typename eT> +inline +const Mat<eT>& +running_stat_vec<eT>::cov(const uword norm_type) + { + arma_extra_debug_sigprint(); + + if(calc_cov == true) + { + const T N = counter.value(); + + if(N > T(1)) + { + if(norm_type == 0) + { + return r_cov; + } + else + { + const T N_minus_1 = counter.value_minus_1(); + + r_cov_dummy = (N_minus_1/N) * r_cov; + + return r_cov_dummy; + } + } + else + { + r_cov_dummy.zeros(r_mean.n_rows, r_mean.n_cols); + + return r_cov_dummy; + } + } + else + { + r_cov_dummy.reset(); + + return r_cov_dummy; + } + + } + + + +//! vector with minimum values +template<typename eT> +inline +const Mat<eT>& +running_stat_vec<eT>::min() const + { + arma_extra_debug_sigprint(); + + return min_val; + } + + + +//! vector with maximum values +template<typename eT> +inline +const Mat<eT>& +running_stat_vec<eT>::max() const + { + arma_extra_debug_sigprint(); + + return max_val; + } + + + +//! number of samples so far +template<typename eT> +inline +typename get_pod_type<eT>::result +running_stat_vec<eT>::count() const + { + arma_extra_debug_sigprint(); + + return counter.value(); + } + + + +// + + + +//! update statistics to reflect new sample +template<typename eT> +inline +void +running_stat_vec_aux::update_stats(running_stat_vec<eT>& x, const Mat<eT>& sample) + { + arma_extra_debug_sigprint(); + + typedef typename running_stat_vec<eT>::T T; + + const T N = x.counter.value(); + + if(N > T(0)) + { + arma_debug_assert_same_size(x.r_mean, sample, "running_stat_vec(): dimensionality mismatch"); + + const uword n_elem = sample.n_elem; + const eT* sample_mem = sample.memptr(); + eT* r_mean_mem = x.r_mean.memptr(); + T* r_var_mem = x.r_var.memptr(); + eT* min_val_mem = x.min_val.memptr(); + eT* max_val_mem = x.max_val.memptr(); + + const T N_plus_1 = x.counter.value_plus_1(); + const T N_minus_1 = x.counter.value_minus_1(); + + if(x.calc_cov == true) + { + Mat<eT>& tmp1 = x.tmp1; + Mat<eT>& tmp2 = x.tmp2; + + tmp1 = sample - x.r_mean; + + if(sample.n_cols == 1) + { + tmp2 = tmp1*trans(tmp1); + } + else + { + tmp2 = trans(tmp1)*tmp1; + } + + x.r_cov *= (N_minus_1/N); + x.r_cov += tmp2 / N_plus_1; + } + + + for(uword i=0; i<n_elem; ++i) + { + const eT val = sample_mem[i]; + + if(val < min_val_mem[i]) + { + min_val_mem[i] = val; + } + + if(val > max_val_mem[i]) + { + max_val_mem[i] = val; + } + + const eT r_mean_val = r_mean_mem[i]; + const eT tmp = val - r_mean_val; + + r_var_mem[i] = N_minus_1/N * r_var_mem[i] + (tmp*tmp)/N_plus_1; + + r_mean_mem[i] = r_mean_val + (val - r_mean_val)/N_plus_1; + } + } + else + { + arma_debug_check( (sample.is_vec() == false), "running_stat_vec(): given sample is not a vector"); + + x.r_mean.set_size(sample.n_rows, sample.n_cols); + + x.r_var.zeros(sample.n_rows, sample.n_cols); + + if(x.calc_cov == true) + { + x.r_cov.zeros(sample.n_elem, sample.n_elem); + } + + x.min_val.set_size(sample.n_rows, sample.n_cols); + x.max_val.set_size(sample.n_rows, sample.n_cols); + + + const uword n_elem = sample.n_elem; + const eT* sample_mem = sample.memptr(); + eT* r_mean_mem = x.r_mean.memptr(); + eT* min_val_mem = x.min_val.memptr(); + eT* max_val_mem = x.max_val.memptr(); + + + for(uword i=0; i<n_elem; ++i) + { + const eT val = sample_mem[i]; + + r_mean_mem[i] = val; + min_val_mem[i] = val; + max_val_mem[i] = val; + } + } + + x.counter++; + } + + + +//! update statistics to reflect new sample (version for complex numbers) +template<typename T> +inline +void +running_stat_vec_aux::update_stats(running_stat_vec< std::complex<T> >& x, const Mat<T>& sample) + { + arma_extra_debug_sigprint(); + + const Mat< std::complex<T> > tmp = conv_to< Mat< std::complex<T> > >::from(sample); + + running_stat_vec_aux::update_stats(x, tmp); + } + + + +//! alter statistics to reflect new sample (version for complex numbers) +template<typename T> +inline +void +running_stat_vec_aux::update_stats(running_stat_vec< std::complex<T> >& x, const Mat< std::complex<T> >& sample) + { + arma_extra_debug_sigprint(); + + typedef typename std::complex<T> eT; + + const T N = x.counter.value(); + + if(N > T(0)) + { + arma_debug_assert_same_size(x.r_mean, sample, "running_stat_vec(): dimensionality mismatch"); + + const uword n_elem = sample.n_elem; + const eT* sample_mem = sample.memptr(); + eT* r_mean_mem = x.r_mean.memptr(); + T* r_var_mem = x.r_var.memptr(); + eT* min_val_mem = x.min_val.memptr(); + eT* max_val_mem = x.max_val.memptr(); + T* min_val_norm_mem = x.min_val_norm.memptr(); + T* max_val_norm_mem = x.max_val_norm.memptr(); + + const T N_plus_1 = x.counter.value_plus_1(); + const T N_minus_1 = x.counter.value_minus_1(); + + if(x.calc_cov == true) + { + Mat<eT>& tmp1 = x.tmp1; + Mat<eT>& tmp2 = x.tmp2; + + tmp1 = sample - x.r_mean; + + if(sample.n_cols == 1) + { + tmp2 = arma::conj(tmp1)*strans(tmp1); + } + else + { + tmp2 = trans(tmp1)*tmp1; //tmp2 = strans(conj(tmp1))*tmp1; + } + + x.r_cov *= (N_minus_1/N); + x.r_cov += tmp2 / N_plus_1; + } + + + for(uword i=0; i<n_elem; ++i) + { + const eT& val = sample_mem[i]; + const T val_norm = std::norm(val); + + if(val_norm < min_val_norm_mem[i]) + { + min_val_norm_mem[i] = val_norm; + min_val_mem[i] = val; + } + + if(val_norm > max_val_norm_mem[i]) + { + max_val_norm_mem[i] = val_norm; + max_val_mem[i] = val; + } + + const eT& r_mean_val = r_mean_mem[i]; + + r_var_mem[i] = N_minus_1/N * r_var_mem[i] + std::norm(val - r_mean_val)/N_plus_1; + + r_mean_mem[i] = r_mean_val + (val - r_mean_val)/N_plus_1; + } + + } + else + { + arma_debug_check( (sample.is_vec() == false), "running_stat_vec(): given sample is not a vector"); + + x.r_mean.set_size(sample.n_rows, sample.n_cols); + + x.r_var.zeros(sample.n_rows, sample.n_cols); + + if(x.calc_cov == true) + { + x.r_cov.zeros(sample.n_elem, sample.n_elem); + } + + x.min_val.set_size(sample.n_rows, sample.n_cols); + x.max_val.set_size(sample.n_rows, sample.n_cols); + + x.min_val_norm.set_size(sample.n_rows, sample.n_cols); + x.max_val_norm.set_size(sample.n_rows, sample.n_cols); + + + const uword n_elem = sample.n_elem; + const eT* sample_mem = sample.memptr(); + eT* r_mean_mem = x.r_mean.memptr(); + eT* min_val_mem = x.min_val.memptr(); + eT* max_val_mem = x.max_val.memptr(); + T* min_val_norm_mem = x.min_val_norm.memptr(); + T* max_val_norm_mem = x.max_val_norm.memptr(); + + for(uword i=0; i<n_elem; ++i) + { + const eT& val = sample_mem[i]; + const T val_norm = std::norm(val); + + r_mean_mem[i] = val; + min_val_mem[i] = val; + max_val_mem[i] = val; + + min_val_norm_mem[i] = val_norm; + max_val_norm_mem[i] = val_norm; + } + } + + x.counter++; + } + + + +//! @}