Mercurial > hg > segmenter-vamp-plugin
diff armadillo-2.4.4/include/armadillo_bits/running_stat_vec_bones.hpp @ 0:8b6102e2a9b0
Armadillo Library
author | maxzanoni76 <max.zanoni@eecs.qmul.ac.uk> |
---|---|
date | Wed, 11 Apr 2012 09:27:06 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/armadillo-2.4.4/include/armadillo_bits/running_stat_vec_bones.hpp Wed Apr 11 09:27:06 2012 +0100 @@ -0,0 +1,115 @@ +// Copyright (C) 2009-2011 NICTA (www.nicta.com.au) +// Copyright (C) 2009-2011 Conrad Sanderson +// +// This file is part of the Armadillo C++ library. +// It is provided without any warranty of fitness +// for any purpose. You can redistribute this file +// and/or modify it under the terms of the GNU +// Lesser General Public License (LGPL) as published +// by the Free Software Foundation, either version 3 +// of the License or (at your option) any later version. +// (see http://www.opensource.org/licenses for more info) + + +//! \addtogroup running_stat_vec +//! @{ + + + +//! Class for keeping statistics of a continuously sampled process / signal. +//! Useful if the storage of individual samples is not necessary or desired. +//! Also useful if the number of samples is not known beforehand or exceeds +//! available memory. +template<typename eT> +class running_stat_vec + { + public: + + typedef typename get_pod_type<eT>::result T; + + inline ~running_stat_vec(); + inline running_stat_vec(const bool in_calc_cov = false); + + inline running_stat_vec(const running_stat_vec& in_rsv); + + inline const running_stat_vec& operator=(const running_stat_vec& in_rsv); + + template<typename T1> arma_hot inline void operator() (const Base< T, T1>& X); + template<typename T1> arma_hot inline void operator() (const Base< std::complex<T>, T1>& X); + + inline void reset(); + + inline const Mat<eT>& mean() const; + + inline const Mat< T>& var (const uword norm_type = 0); + inline Mat< T> stddev(const uword norm_type = 0) const; + inline const Mat<eT>& cov (const uword norm_type = 0); + + inline const Mat<eT>& min() const; + inline const Mat<eT>& max() const; + + inline T count() const; + + // + // + + private: + + const bool calc_cov; + + arma_aligned arma_counter<T> counter; + + arma_aligned Mat<eT> r_mean; + arma_aligned Mat< T> r_var; + arma_aligned Mat<eT> r_cov; + + arma_aligned Mat<eT> min_val; + arma_aligned Mat<eT> max_val; + + arma_aligned Mat< T> min_val_norm; + arma_aligned Mat< T> max_val_norm; + + arma_aligned Mat< T> r_var_dummy; + arma_aligned Mat<eT> r_cov_dummy; + + arma_aligned Mat<eT> tmp1; + arma_aligned Mat<eT> tmp2; + + friend class running_stat_vec_aux; + }; + + + +class running_stat_vec_aux + { + public: + + template<typename eT> + inline static void update_stats(running_stat_vec< eT >& x, const Mat<eT>& sample); + + template<typename T> + inline static void update_stats(running_stat_vec< std::complex<T> >& x, const Mat< T>& sample); + + template<typename T> + inline static void update_stats(running_stat_vec< std::complex<T> >& x, const Mat< std::complex<T> >& sample); + + // + + template<typename eT> + inline static Mat<eT> var(const running_stat_vec< eT >& x, const uword norm_type = 0); + + template<typename T> + inline static Mat< T> var(const running_stat_vec< std::complex<T> >& x, const uword norm_type = 0); + + // + + template<typename eT> + inline static Mat< eT > cov(const running_stat_vec< eT >& x, const uword norm_type = 0); + + template<typename T> + inline static Mat< std::complex<T> > cov(const running_stat_vec< std::complex<T> >& x, const uword norm_type = 0); + }; + + + +//! @}