Mercurial > hg > segmenter-vamp-plugin
diff armadillo-3.900.4/include/armadillo_bits/spop_var_meat.hpp @ 49:1ec0e2823891
Switch to using subrepo copies of qm-dsp, nnls-chroma, vamp-plugin-sdk; update Armadillo version; assume build without external BLAS/LAPACK
author | Chris Cannam |
---|---|
date | Thu, 13 Jun 2013 10:25:24 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/armadillo-3.900.4/include/armadillo_bits/spop_var_meat.hpp Thu Jun 13 10:25:24 2013 +0100 @@ -0,0 +1,401 @@ +// Copyright (C) 2012 Ryan Curtin +// Copyright (C) 2012 Conrad Sanderson +// +// This Source Code Form is subject to the terms of the Mozilla Public +// License, v. 2.0. If a copy of the MPL was not distributed with this +// file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +//! \addtogroup spop_var +//! @{ + + + +template<typename T1> +inline +void +spop_var::apply(SpMat<typename T1::pod_type>& out, const mtSpOp<typename T1::pod_type, T1, spop_var>& in) + { + arma_extra_debug_sigprint(); + + //typedef typename T1::elem_type in_eT; + typedef typename T1::pod_type out_eT; + + const uword norm_type = in.aux_uword_a; + const uword dim = in.aux_uword_b; + + arma_debug_check((norm_type > 1), "var(): incorrect usage. norm_type must be 0 or 1"); + arma_debug_check((dim > 1), "var(): incorrect usage. dim must be 0 or 1"); + + SpProxy<T1> p(in.m); + + if(p.is_alias(out) == false) + { + spop_var::apply_noalias(out, p, norm_type, dim); + } + else + { + SpMat<out_eT> tmp; + + spop_var::apply_noalias(tmp, p, norm_type, dim); + + out.steal_mem(tmp); + } + } + + + +template<typename T1> +inline +void +spop_var::apply_noalias + ( + SpMat<typename T1::pod_type>& out_ref, + const SpProxy<T1>& p, + const uword norm_type, + const uword dim + ) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type in_eT; + //typedef typename T1::pod_type out_eT; + + const uword p_n_rows = p.get_n_rows(); + const uword p_n_cols = p.get_n_cols(); + + if(dim == 0) + { + arma_extra_debug_print("spop_var::apply(), dim = 0"); + + arma_debug_check((p_n_rows == 0), "var(): given object has zero rows"); + + out_ref.set_size(1, p_n_cols); + + for(uword col = 0; col < p_n_cols; ++col) + { + if(SpProxy<T1>::must_use_iterator == true) + { + // We must use an iterator; we can't access memory directly. + typename SpProxy<T1>::const_iterator_type it = p.begin_col(col); + typename SpProxy<T1>::const_iterator_type end = p.begin_col(col + 1); + + const uword n_zero = p.get_n_rows() - (end.pos() - it.pos()); + + // in_eT is used just to get the specialization right (complex / noncomplex) + out_ref.at(col) = spop_var::iterator_var(it, end, n_zero, norm_type, in_eT(0)); + } + else + { + // We can use direct memory access to calculate the variance. + out_ref.at(col) = spop_var::direct_var + ( + &p.get_values()[p.get_col_ptrs()[col]], + p.get_col_ptrs()[col + 1] - p.get_col_ptrs()[col], + p.get_n_rows(), + norm_type + ); + } + } + } + else if(dim == 1) + { + arma_extra_debug_print("spop_var::apply_noalias(), dim = 1"); + + arma_debug_check((p_n_cols == 0), "var(): given object has zero columns"); + + out_ref.set_size(p_n_rows, 1); + + for(uword row = 0; row < p_n_rows; ++row) + { + // We have to use an iterator here regardless of whether or not we can + // directly access memory. + typename SpProxy<T1>::const_row_iterator_type it = p.begin_row(row); + typename SpProxy<T1>::const_row_iterator_type end = p.end_row(row); + + const uword n_zero = p.get_n_cols() - (end.pos() - it.pos()); + + out_ref.at(row) = spop_var::iterator_var(it, end, n_zero, norm_type, in_eT(0)); + } + } + } + + + +template<typename T1> +inline +typename T1::pod_type +spop_var::var_vec + ( + const T1& X, + const uword norm_type + ) + { + arma_extra_debug_sigprint(); + + arma_debug_check((norm_type > 1), "var(): incorrect usage. norm_type must be 0 or 1."); + + // conditionally unwrap it into a temporary and then directly operate. + + const unwrap_spmat<T1> tmp(X); + + return direct_var(tmp.M.values, tmp.M.n_nonzero, tmp.M.n_elem, norm_type); + } + + + +template<typename eT> +inline +eT +spop_var::direct_var + ( + const eT* const X, + const uword length, + const uword N, + const uword norm_type + ) + { + arma_extra_debug_sigprint(); + + if(length >= 2 && N >= 2) + { + const eT acc1 = spop_mean::direct_mean(X, length, N); + + eT acc2 = eT(0); + eT acc3 = eT(0); + + uword i, j; + + for(i = 0, j = 1; j < length; i += 2, j += 2) + { + const eT Xi = X[i]; + const eT Xj = X[j]; + + const eT tmpi = acc1 - Xi; + const eT tmpj = acc1 - Xj; + + acc2 += tmpi * tmpi + tmpj * tmpj; + acc3 += tmpi + tmpj; + } + + if(i < length) + { + const eT Xi = X[i]; + + const eT tmpi = acc1 - Xi; + + acc2 += tmpi * tmpi; + acc3 += tmpi; + } + + // Now add in all zero elements. + acc2 += (N - length) * (acc1 * acc1); + acc3 += (N - length) * acc1; + + const eT norm_val = (norm_type == 0) ? eT(N - 1) : eT(N); + const eT var_val = (acc2 - (acc3 * acc3) / eT(N)) / norm_val; + + return var_val; + } + else if(length == 1 && N > 1) // if N == 1, then variance is zero. + { + const eT mean = X[0] / eT(N); + const eT val = mean - X[0]; + + const eT acc2 = (val * val) + (N - length) * (mean * mean); + const eT acc3 = val + (N - length) * mean; + + const eT norm_val = (norm_type == 0) ? eT(N - 1) : eT(N); + const eT var_val = (acc2 - (acc3 * acc3) / eT(N)) / norm_val; + + return var_val; + } + else + { + return eT(0); + } + } + + + +template<typename T> +inline +T +spop_var::direct_var + ( + const std::complex<T>* const X, + const uword length, + const uword N, + const uword norm_type + ) + { + arma_extra_debug_sigprint(); + + typedef typename std::complex<T> eT; + + if(length >= 2 && N >= 2) + { + const eT acc1 = spop_mean::direct_mean(X, length, N); + + T acc2 = T(0); + eT acc3 = eT(0); + + for (uword i = 0; i < length; ++i) + { + const eT tmp = acc1 - X[i]; + + acc2 += std::norm(tmp); + acc3 += tmp; + } + + // Add zero elements to sums + acc2 += std::norm(acc1) * T(N - length); + acc3 += acc1 * T(N - length); + + const T norm_val = (norm_type == 0) ? T(N - 1) : T(N); + const T var_val = (acc2 - std::norm(acc3) / T(N)) / norm_val; + + return var_val; + } + else if(length == 1 && N > 1) // if N == 1, then variance is zero. + { + const eT mean = X[0] / T(N); + const eT val = mean - X[0]; + + const T acc2 = std::norm(val) + (N - length) * std::norm(mean); + const eT acc3 = val + T(N - length) * mean; + + const T norm_val = (norm_type == 0) ? T(N - 1) : T(N); + const T var_val = (acc2 - std::norm(acc3) / T(N)) / norm_val; + + return var_val; + } + else + { + return T(0); // All elements are zero + } + } + + + +template<typename T1, typename eT> +inline +eT +spop_var::iterator_var + ( + T1& it, + const T1& end, + const uword n_zero, + const uword norm_type, + const eT junk1, + const typename arma_not_cx<eT>::result* junk2 + ) + { + arma_extra_debug_sigprint(); + arma_ignore(junk1); + arma_ignore(junk2); + + T1 new_it(it); // for mean + // T1 backup_it(it); // in case we have to call robust iterator_var + eT mean = spop_mean::iterator_mean(new_it, end, n_zero, eT(0)); + + eT acc2 = eT(0); + eT acc3 = eT(0); + + const uword it_begin_pos = it.pos(); + + while (it != end) + { + const eT tmp = mean - (*it); + + acc2 += (tmp * tmp); + acc3 += (tmp); + + ++it; + } + + const uword n_nonzero = (it.pos() - it_begin_pos); + if (n_nonzero == 0) + { + return eT(0); + } + + if (n_nonzero + n_zero == 1) + { + return eT(0); // only one element + } + + // Add in entries for zeros. + acc2 += eT(n_zero) * (mean * mean); + acc3 += eT(n_zero) * mean; + + const eT norm_val = (norm_type == 0) ? eT(n_zero + n_nonzero - 1) : eT(n_zero + n_nonzero); + const eT var_val = (acc2 - (acc3 * acc3) / eT(n_nonzero + n_zero)) / norm_val; + + return var_val; + } + + + +template<typename T1, typename eT> +inline +typename get_pod_type<eT>::result +spop_var::iterator_var + ( + T1& it, + const T1& end, + const uword n_zero, + const uword norm_type, + const eT junk1, + const typename arma_cx_only<eT>::result* junk2 + ) + { + arma_extra_debug_sigprint(); + arma_ignore(junk1); + arma_ignore(junk2); + + typedef typename get_pod_type<eT>::result T; + + T1 new_it(it); // for mean + // T1 backup_it(it); // in case we have to call robust iterator_var + eT mean = spop_mean::iterator_mean(new_it, end, n_zero, eT(0)); + + T acc2 = T(0); + eT acc3 = eT(0); + + const uword it_begin_pos = it.pos(); + + while (it != end) + { + eT tmp = mean - (*it); + + acc2 += std::norm(tmp); + acc3 += (tmp); + + ++it; + } + + const uword n_nonzero = (it.pos() - it_begin_pos); + if (n_nonzero == 0) + { + return T(0); + } + + if (n_nonzero + n_zero == 1) + { + return T(0); // only one element + } + + // Add in entries for zero elements. + acc2 += T(n_zero) * std::norm(mean); + acc3 += T(n_zero) * mean; + + const T norm_val = (norm_type == 0) ? T(n_zero + n_nonzero - 1) : T(n_zero + n_nonzero); + const T var_val = (acc2 - std::norm(acc3) / T(n_nonzero + n_zero)) / norm_val; + + return var_val; + } + + + +//! @}