diff armadillo-3.900.4/include/armadillo_bits/spop_mean_meat.hpp @ 49:1ec0e2823891

Switch to using subrepo copies of qm-dsp, nnls-chroma, vamp-plugin-sdk; update Armadillo version; assume build without external BLAS/LAPACK
author Chris Cannam
date Thu, 13 Jun 2013 10:25:24 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/armadillo-3.900.4/include/armadillo_bits/spop_mean_meat.hpp	Thu Jun 13 10:25:24 2013 +0100
@@ -0,0 +1,257 @@
+// Copyright (C) 2012 Ryan Curtin
+// Copyright (C) 2012 Conrad Sanderson
+//
+// This Source Code Form is subject to the terms of the Mozilla Public
+// License, v. 2.0. If a copy of the MPL was not distributed with this
+// file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+
+//! \addtogroup spop_mean
+//! @{
+
+
+
+template<typename T1>
+inline
+void
+spop_mean::apply(SpMat<typename T1::elem_type>& out, const SpOp<T1, spop_mean>& in)
+  {
+  arma_extra_debug_sigprint();
+  
+  typedef typename T1::elem_type eT;
+  
+  const uword dim = in.aux_uword_a;
+  arma_debug_check((dim > 1), "mean(): incorrect usage. dim must be 0 or 1");
+  
+  SpProxy<T1> p(in.m);
+  
+  if(p.is_alias(out) == false)
+    {
+    spop_mean::apply_noalias(out, p, dim);
+    }
+  else
+    {
+    SpMat<eT> tmp;
+    
+    spop_mean::apply_noalias(tmp, p, dim);
+    
+    out.steal_mem(tmp);
+    }
+  }
+
+
+
+template<typename T1>
+inline
+void
+spop_mean::apply_noalias
+  (
+        SpMat<typename T1::elem_type>& out_ref,
+  const SpProxy<T1>&                   p,
+  const uword                          dim
+  )
+  {
+  arma_extra_debug_sigprint();
+
+  typedef typename T1::elem_type eT;
+  
+  const uword p_n_rows = p.get_n_rows();
+  const uword p_n_cols = p.get_n_cols();
+
+  if (dim == 0)
+    {
+    arma_extra_debug_print("spop_mean::apply_noalias(), dim = 0");
+
+    out_ref.set_size((p_n_rows > 0) ? 1 : 0, p_n_cols);
+
+    if(p_n_rows > 0)
+      {
+      for(uword col = 0; col < p_n_cols; ++col)
+        {
+        // Do we have to use an iterator or can we use memory directly?
+        if(SpProxy<T1>::must_use_iterator == true)
+          {
+          typename SpProxy<T1>::const_iterator_type it  = p.begin_col(col);
+          typename SpProxy<T1>::const_iterator_type end = p.begin_col(col + 1);
+          
+          const uword n_zero = p.get_n_rows() - (end.pos() - it.pos());
+          
+          out_ref.at(col) = spop_mean::iterator_mean(it, end, n_zero, eT(0));
+          }
+        else
+          {
+          out_ref.at(col) = spop_mean::direct_mean
+            (
+            &p.get_values()[p.get_col_ptrs()[col]],
+            p.get_col_ptrs()[col + 1] - p.get_col_ptrs()[col],
+            p.get_n_rows()
+            );
+          }
+        }
+      }
+    }
+  else if (dim == 1)
+    {
+    arma_extra_debug_print("spop_mean::apply_noalias(), dim = 1");
+    
+    out_ref.set_size(p_n_rows, (p_n_cols > 0) ? 1 : 0);
+    
+    if(p_n_cols > 0)
+      {
+      for(uword row = 0; row < p_n_rows; ++row)
+        {
+        // We must use an iterator regardless of how it is stored.
+        typename SpProxy<T1>::const_row_iterator_type it  = p.begin_row(row);
+        typename SpProxy<T1>::const_row_iterator_type end = p.end_row(row);
+        
+        const uword n_zero = p.get_n_cols() - (end.pos() - it.pos());
+        
+        out_ref.at(row) = spop_mean::iterator_mean(it, end, n_zero, eT(0));
+        }
+      }
+    }
+  }
+
+
+
+template<typename eT>
+inline
+eT
+spop_mean::direct_mean
+  (
+  const eT* const X,
+  const uword length,
+  const uword N
+  )
+  {
+  arma_extra_debug_sigprint();
+
+  typedef typename get_pod_type<eT>::result T;
+
+  const eT result = arrayops::accumulate(X, length) / T(N);
+
+  return arma_isfinite(result) ? result : spop_mean::direct_mean_robust(X, length, N);
+  }
+
+
+
+template<typename eT>
+inline
+eT
+spop_mean::direct_mean_robust
+  (
+  const eT* const X,
+  const uword length,
+  const uword N
+  )
+  {
+  arma_extra_debug_sigprint();
+
+  typedef typename get_pod_type<eT>::result T;
+
+  uword i, j;
+
+  eT r_mean = eT(0);
+
+  const uword diff = (N - length); // number of zeros
+
+  for(i = 0, j = 1; j < length; i += 2, j += 2)
+    {
+    const eT Xi = X[i];
+    const eT Xj = X[j];
+
+    r_mean += (Xi - r_mean) / T(diff + j);
+    r_mean += (Xj - r_mean) / T(diff + j + 1);
+    }
+
+  if(i < length)
+    {
+    const eT Xi = X[i];
+
+    r_mean += (Xi - r_mean) / T(diff + i + 1);
+    }
+
+  return r_mean;
+  }
+
+
+
+template<typename T1>
+inline
+typename T1::elem_type
+spop_mean::mean_all(const SpBase<typename T1::elem_type, T1>& X)
+  {
+  arma_extra_debug_sigprint();
+
+  SpProxy<T1> p(X.get_ref());
+
+  if (SpProxy<T1>::must_use_iterator == true)
+    {
+    typename SpProxy<T1>::const_iterator_type it  = p.begin();
+    typename SpProxy<T1>::const_iterator_type end = p.end();
+
+    return spop_mean::iterator_mean(it, end, p.get_n_elem() - p.get_n_nonzero(), typename T1::elem_type(0));
+    }
+  else // must_use_iterator == false; that is, we can directly access the values array
+    {
+    return spop_mean::direct_mean(p.get_values(), p.get_n_nonzero(), p.get_n_elem());
+    }
+  }
+
+
+
+template<typename T1, typename eT>
+inline
+eT
+spop_mean::iterator_mean(T1& it, const T1& end, const uword n_zero, const eT junk)
+  {
+  arma_extra_debug_sigprint();
+  arma_ignore(junk);
+
+  typedef typename get_pod_type<eT>::result T;
+
+  eT sum = eT(0);
+
+  T1 backup_it(it); // in case we have to use robust iterator_mean
+
+  const uword it_begin_pos = it.pos();
+
+  while (it != end)
+    {
+    sum += (*it);
+    ++it;
+    }
+
+  const eT result = sum / T(n_zero + (it.pos() - it_begin_pos));
+
+  return arma_isfinite(result) ? result : spop_mean::iterator_mean_robust(backup_it, end, n_zero, eT(0));
+  }
+
+
+
+template<typename T1, typename eT>
+inline
+eT
+spop_mean::iterator_mean_robust(T1& it, const T1& end, const uword n_zero, const eT junk)
+  {
+  arma_extra_debug_sigprint();
+  arma_ignore(junk);
+
+  typedef typename get_pod_type<eT>::result T;
+
+  eT r_mean = eT(0);
+
+  const uword it_begin_pos = it.pos();
+
+  while (it != end)
+    {
+    r_mean += ((*it - r_mean) / T(n_zero + (it.pos() - it_begin_pos) + 1));
+    ++it;
+    }
+
+  return r_mean;
+  }
+
+
+
+//! @}