Mercurial > hg > segmenter-vamp-plugin
diff armadillo-3.900.4/include/armadillo_bits/op_princomp_meat.hpp @ 49:1ec0e2823891
Switch to using subrepo copies of qm-dsp, nnls-chroma, vamp-plugin-sdk; update Armadillo version; assume build without external BLAS/LAPACK
author | Chris Cannam |
---|---|
date | Thu, 13 Jun 2013 10:25:24 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/armadillo-3.900.4/include/armadillo_bits/op_princomp_meat.hpp Thu Jun 13 10:25:24 2013 +0100 @@ -0,0 +1,651 @@ +// Copyright (C) 2010-2012 NICTA (www.nicta.com.au) +// Copyright (C) 2010-2012 Conrad Sanderson +// Copyright (C) 2010 Dimitrios Bouzas +// Copyright (C) 2011 Stanislav Funiak +// +// This Source Code Form is subject to the terms of the Mozilla Public +// License, v. 2.0. If a copy of the MPL was not distributed with this +// file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +//! \addtogroup op_princomp +//! @{ + + + +//! \brief +//! principal component analysis -- 4 arguments version +//! computation is done via singular value decomposition +//! coeff_out -> principal component coefficients +//! score_out -> projected samples +//! latent_out -> eigenvalues of principal vectors +//! tsquared_out -> Hotelling's T^2 statistic +template<typename T1> +inline +bool +op_princomp::direct_princomp + ( + Mat<typename T1::elem_type>& coeff_out, + Mat<typename T1::elem_type>& score_out, + Col<typename T1::elem_type>& latent_out, + Col<typename T1::elem_type>& tsquared_out, + const Base<typename T1::elem_type, T1>& X, + const typename arma_not_cx<typename T1::elem_type>::result* junk + ) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + typedef typename T1::elem_type eT; + + const unwrap_check<T1> Y( X.get_ref(), score_out ); + const Mat<eT>& in = Y.M; + + const uword n_rows = in.n_rows; + const uword n_cols = in.n_cols; + + if(n_rows > 1) // more than one sample + { + // subtract the mean - use score_out as temporary matrix + score_out = in - repmat(mean(in), n_rows, 1); + + // singular value decomposition + Mat<eT> U; + Col<eT> s; + + const bool svd_ok = svd(U,s,coeff_out,score_out); + + if(svd_ok == false) + { + return false; + } + + + //U.reset(); // TODO: do we need this ? U will get automatically deleted anyway + + // normalize the eigenvalues + s /= std::sqrt( double(n_rows - 1) ); + + // project the samples to the principals + score_out *= coeff_out; + + if(n_rows <= n_cols) // number of samples is less than their dimensionality + { + score_out.cols(n_rows-1,n_cols-1).zeros(); + + //Col<eT> s_tmp = zeros< Col<eT> >(n_cols); + Col<eT> s_tmp(n_cols); + s_tmp.zeros(); + + s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); + s = s_tmp; + + // compute the Hotelling's T-squared + s_tmp.rows(0,n_rows-2) = eT(1) / s_tmp.rows(0,n_rows-2); + + const Mat<eT> S = score_out * diagmat(Col<eT>(s_tmp)); + tsquared_out = sum(S%S,1); + } + else + { + // compute the Hotelling's T-squared + const Mat<eT> S = score_out * diagmat(Col<eT>( eT(1) / s)); + tsquared_out = sum(S%S,1); + } + + // compute the eigenvalues of the principal vectors + latent_out = s%s; + } + else // 0 or 1 samples + { + coeff_out.eye(n_cols, n_cols); + + score_out.copy_size(in); + score_out.zeros(); + + latent_out.set_size(n_cols); + latent_out.zeros(); + + tsquared_out.set_size(n_rows); + tsquared_out.zeros(); + } + + return true; + } + + + +//! \brief +//! principal component analysis -- 3 arguments version +//! computation is done via singular value decomposition +//! coeff_out -> principal component coefficients +//! score_out -> projected samples +//! latent_out -> eigenvalues of principal vectors +template<typename T1> +inline +bool +op_princomp::direct_princomp + ( + Mat<typename T1::elem_type>& coeff_out, + Mat<typename T1::elem_type>& score_out, + Col<typename T1::elem_type>& latent_out, + const Base<typename T1::elem_type, T1>& X, + const typename arma_not_cx<typename T1::elem_type>::result* junk + ) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + typedef typename T1::elem_type eT; + + const unwrap_check<T1> Y( X.get_ref(), score_out ); + const Mat<eT>& in = Y.M; + + const uword n_rows = in.n_rows; + const uword n_cols = in.n_cols; + + if(n_rows > 1) // more than one sample + { + // subtract the mean - use score_out as temporary matrix + score_out = in - repmat(mean(in), n_rows, 1); + + // singular value decomposition + Mat<eT> U; + Col<eT> s; + + const bool svd_ok = svd(U,s,coeff_out,score_out); + + if(svd_ok == false) + { + return false; + } + + + // U.reset(); + + // normalize the eigenvalues + s /= std::sqrt( double(n_rows - 1) ); + + // project the samples to the principals + score_out *= coeff_out; + + if(n_rows <= n_cols) // number of samples is less than their dimensionality + { + score_out.cols(n_rows-1,n_cols-1).zeros(); + + Col<eT> s_tmp = zeros< Col<eT> >(n_cols); + s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); + s = s_tmp; + } + + // compute the eigenvalues of the principal vectors + latent_out = s%s; + + } + else // 0 or 1 samples + { + coeff_out.eye(n_cols, n_cols); + + score_out.copy_size(in); + score_out.zeros(); + + latent_out.set_size(n_cols); + latent_out.zeros(); + } + + return true; + } + + + +//! \brief +//! principal component analysis -- 2 arguments version +//! computation is done via singular value decomposition +//! coeff_out -> principal component coefficients +//! score_out -> projected samples +template<typename T1> +inline +bool +op_princomp::direct_princomp + ( + Mat<typename T1::elem_type>& coeff_out, + Mat<typename T1::elem_type>& score_out, + const Base<typename T1::elem_type, T1>& X, + const typename arma_not_cx<typename T1::elem_type>::result* junk + ) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + typedef typename T1::elem_type eT; + + const unwrap_check<T1> Y( X.get_ref(), score_out ); + const Mat<eT>& in = Y.M; + + const uword n_rows = in.n_rows; + const uword n_cols = in.n_cols; + + if(n_rows > 1) // more than one sample + { + // subtract the mean - use score_out as temporary matrix + score_out = in - repmat(mean(in), n_rows, 1); + + // singular value decomposition + Mat<eT> U; + Col<eT> s; + + const bool svd_ok = svd(U,s,coeff_out,score_out); + + if(svd_ok == false) + { + return false; + } + + // U.reset(); + + // normalize the eigenvalues + s /= std::sqrt( double(n_rows - 1) ); + + // project the samples to the principals + score_out *= coeff_out; + + if(n_rows <= n_cols) // number of samples is less than their dimensionality + { + score_out.cols(n_rows-1,n_cols-1).zeros(); + + Col<eT> s_tmp = zeros< Col<eT> >(n_cols); + s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); + s = s_tmp; + } + } + else // 0 or 1 samples + { + coeff_out.eye(n_cols, n_cols); + score_out.copy_size(in); + score_out.zeros(); + } + + return true; + } + + + +//! \brief +//! principal component analysis -- 1 argument version +//! computation is done via singular value decomposition +//! coeff_out -> principal component coefficients +template<typename T1> +inline +bool +op_princomp::direct_princomp + ( + Mat<typename T1::elem_type>& coeff_out, + const Base<typename T1::elem_type, T1>& X, + const typename arma_not_cx<typename T1::elem_type>::result* junk + ) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + typedef typename T1::elem_type eT; + + const unwrap<T1> Y( X.get_ref() ); + const Mat<eT>& in = Y.M; + + if(in.n_elem != 0) + { + // singular value decomposition + Mat<eT> U; + Col<eT> s; + + const Mat<eT> tmp = in - repmat(mean(in), in.n_rows, 1); + + const bool svd_ok = svd(U,s,coeff_out, tmp); + + if(svd_ok == false) + { + return false; + } + } + else + { + coeff_out.eye(in.n_cols, in.n_cols); + } + + return true; + } + + + +//! \brief +//! principal component analysis -- 4 arguments complex version +//! computation is done via singular value decomposition +//! coeff_out -> principal component coefficients +//! score_out -> projected samples +//! latent_out -> eigenvalues of principal vectors +//! tsquared_out -> Hotelling's T^2 statistic +template<typename T1> +inline +bool +op_princomp::direct_princomp + ( + Mat< std::complex<typename T1::pod_type> >& coeff_out, + Mat< std::complex<typename T1::pod_type> >& score_out, + Col< typename T1::pod_type >& latent_out, + Col< std::complex<typename T1::pod_type> >& tsquared_out, + const Base< std::complex<typename T1::pod_type>, T1 >& X, + const typename arma_cx_only<typename T1::elem_type>::result* junk + ) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + typedef typename T1::pod_type T; + typedef std::complex<T> eT; + + const unwrap_check<T1> Y( X.get_ref(), score_out ); + const Mat<eT>& in = Y.M; + + const uword n_rows = in.n_rows; + const uword n_cols = in.n_cols; + + if(n_rows > 1) // more than one sample + { + // subtract the mean - use score_out as temporary matrix + score_out = in - repmat(mean(in), n_rows, 1); + + // singular value decomposition + Mat<eT> U; + Col<T> s; + + const bool svd_ok = svd(U,s,coeff_out,score_out); + + if(svd_ok == false) + { + return false; + } + + + //U.reset(); + + // normalize the eigenvalues + s /= std::sqrt( double(n_rows - 1) ); + + // project the samples to the principals + score_out *= coeff_out; + + if(n_rows <= n_cols) // number of samples is less than their dimensionality + { + score_out.cols(n_rows-1,n_cols-1).zeros(); + + Col<T> s_tmp = zeros< Col<T> >(n_cols); + s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); + s = s_tmp; + + // compute the Hotelling's T-squared + s_tmp.rows(0,n_rows-2) = 1.0 / s_tmp.rows(0,n_rows-2); + const Mat<eT> S = score_out * diagmat(Col<T>(s_tmp)); + tsquared_out = sum(S%S,1); + } + else + { + // compute the Hotelling's T-squared + const Mat<eT> S = score_out * diagmat(Col<T>(T(1) / s)); + tsquared_out = sum(S%S,1); + } + + // compute the eigenvalues of the principal vectors + latent_out = s%s; + + } + else // 0 or 1 samples + { + coeff_out.eye(n_cols, n_cols); + + score_out.copy_size(in); + score_out.zeros(); + + latent_out.set_size(n_cols); + latent_out.zeros(); + + tsquared_out.set_size(n_rows); + tsquared_out.zeros(); + } + + return true; + } + + + +//! \brief +//! principal component analysis -- 3 arguments complex version +//! computation is done via singular value decomposition +//! coeff_out -> principal component coefficients +//! score_out -> projected samples +//! latent_out -> eigenvalues of principal vectors +template<typename T1> +inline +bool +op_princomp::direct_princomp + ( + Mat< std::complex<typename T1::pod_type> >& coeff_out, + Mat< std::complex<typename T1::pod_type> >& score_out, + Col< typename T1::pod_type >& latent_out, + const Base< std::complex<typename T1::pod_type>, T1 >& X, + const typename arma_cx_only<typename T1::elem_type>::result* junk + ) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + typedef typename T1::pod_type T; + typedef std::complex<T> eT; + + const unwrap_check<T1> Y( X.get_ref(), score_out ); + const Mat<eT>& in = Y.M; + + const uword n_rows = in.n_rows; + const uword n_cols = in.n_cols; + + if(n_rows > 1) // more than one sample + { + // subtract the mean - use score_out as temporary matrix + score_out = in - repmat(mean(in), n_rows, 1); + + // singular value decomposition + Mat<eT> U; + Col< T> s; + + const bool svd_ok = svd(U,s,coeff_out,score_out); + + if(svd_ok == false) + { + return false; + } + + + // U.reset(); + + // normalize the eigenvalues + s /= std::sqrt( double(n_rows - 1) ); + + // project the samples to the principals + score_out *= coeff_out; + + if(n_rows <= n_cols) // number of samples is less than their dimensionality + { + score_out.cols(n_rows-1,n_cols-1).zeros(); + + Col<T> s_tmp = zeros< Col<T> >(n_cols); + s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); + s = s_tmp; + } + + // compute the eigenvalues of the principal vectors + latent_out = s%s; + + } + else // 0 or 1 samples + { + coeff_out.eye(n_cols, n_cols); + + score_out.copy_size(in); + score_out.zeros(); + + latent_out.set_size(n_cols); + latent_out.zeros(); + } + + return true; + } + + + +//! \brief +//! principal component analysis -- 2 arguments complex version +//! computation is done via singular value decomposition +//! coeff_out -> principal component coefficients +//! score_out -> projected samples +template<typename T1> +inline +bool +op_princomp::direct_princomp + ( + Mat< std::complex<typename T1::pod_type> >& coeff_out, + Mat< std::complex<typename T1::pod_type> >& score_out, + const Base< std::complex<typename T1::pod_type>, T1 >& X, + const typename arma_cx_only<typename T1::elem_type>::result* junk + ) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + typedef typename T1::pod_type T; + typedef std::complex<T> eT; + + const unwrap_check<T1> Y( X.get_ref(), score_out ); + const Mat<eT>& in = Y.M; + + const uword n_rows = in.n_rows; + const uword n_cols = in.n_cols; + + if(n_rows > 1) // more than one sample + { + // subtract the mean - use score_out as temporary matrix + score_out = in - repmat(mean(in), n_rows, 1); + + // singular value decomposition + Mat<eT> U; + Col< T> s; + + const bool svd_ok = svd(U,s,coeff_out,score_out); + + if(svd_ok == false) + { + return false; + } + + // U.reset(); + + // normalize the eigenvalues + s /= std::sqrt( double(n_rows - 1) ); + + // project the samples to the principals + score_out *= coeff_out; + + if(n_rows <= n_cols) // number of samples is less than their dimensionality + { + score_out.cols(n_rows-1,n_cols-1).zeros(); + } + + } + else // 0 or 1 samples + { + coeff_out.eye(n_cols, n_cols); + + score_out.copy_size(in); + score_out.zeros(); + } + + return true; + } + + + +//! \brief +//! principal component analysis -- 1 argument complex version +//! computation is done via singular value decomposition +//! coeff_out -> principal component coefficients +template<typename T1> +inline +bool +op_princomp::direct_princomp + ( + Mat< std::complex<typename T1::pod_type> >& coeff_out, + const Base< std::complex<typename T1::pod_type>, T1 >& X, + const typename arma_cx_only<typename T1::elem_type>::result* junk + ) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + typedef typename T1::pod_type T; + typedef std::complex<T> eT; + + const unwrap<T1> Y( X.get_ref() ); + const Mat<eT>& in = Y.M; + + if(in.n_elem != 0) + { + // singular value decomposition + Mat<eT> U; + Col< T> s; + + const Mat<eT> tmp = in - repmat(mean(in), in.n_rows, 1); + + const bool svd_ok = svd(U,s,coeff_out, tmp); + + if(svd_ok == false) + { + return false; + } + } + else + { + coeff_out.eye(in.n_cols, in.n_cols); + } + + return true; + } + + + +template<typename T1> +inline +void +op_princomp::apply + ( + Mat<typename T1::elem_type>& out, + const Op<T1,op_princomp>& in + ) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + const unwrap_check<T1> tmp(in.m, out); + const Mat<eT>& A = tmp.M; + + const bool status = op_princomp::direct_princomp(out, A); + + if(status == false) + { + out.reset(); + + arma_bad("princomp(): failed to converge"); + } + } + + + +//! @}