Mercurial > hg > segmentation
view pymf/kmeans.py @ 0:26838b1f560f
initial commit of a segmenter project
author | mi tian |
---|---|
date | Thu, 02 Apr 2015 18:09:27 +0100 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/python # # Copyright (C) Christian Thurau, 2010. # Licensed under the GNU General Public License (GPL). # http://www.gnu.org/licenses/gpl.txt """ PyMF K-means clustering (unary-convex matrix factorization). """ import numpy as np import random import dist from nmf import NMF __all__ = ["Kmeans"] class Kmeans(NMF): """ Kmeans(data, num_bases=4) K-means clustering. Factorize a data matrix into two matrices s.t. F = | data - W*H | is minimal. H is restricted to unary vectors, W is simply the mean over the corresponding samples in "data". Parameters ---------- data : array_like, shape (_data_dimension, _num_samples) the input data num_bases: int, optional Number of bases to compute (column rank of W and row rank of H). 4 (default) Attributes ---------- W : "data_dimension x num_bases" matrix of basis vectors H : "num bases x num_samples" matrix of coefficients ferr : frobenius norm (after calling .factorize()) Example ------- Applying K-means to some rather stupid data set: >>> import numpy as np >>> data = np.array([[1.0, 0.0, 2.0], [0.0, 1.0, 1.0]]) >>> kmeans_mdl = Kmeans(data, num_bases=2) >>> kmeans_mdl.factorize(niter=10) The basis vectors are now stored in kmeans_mdl.W, the coefficients in kmeans_mdl.H. To compute coefficients for an existing set of basis vectors simply copy W to kmeans_mdl.W, and set compute_w to False: >>> data = np.array([[1.5], [1.2]]) >>> W = [[1.0, 0.0], [0.0, 1.0]] >>> kmeans_mdl = Kmeans(data, num_bases=2) >>> kmeans_mdl.W = W >>> kmeans_mdl.factorize(niter=1, compute_w=False) The result is a set of coefficients kmeans_mdl.H, s.t. data = W * kmeans_mdl.H. """ def init_h(self): # W has to be present for H to be initialized self.H = np.zeros((self._num_bases, self._num_samples)) self.update_h() def init_w(self): # set W to some random data samples sel = random.sample(xrange(self._num_samples), self._num_bases) # sort indices, otherwise h5py won't work self.W = self.data[:, np.sort(sel)] def update_h(self): # and assign samples to the best matching centers self.assigned = dist.vq(self.W, self.data) self.H = np.zeros(self.H.shape) self.H[self.assigned, range(self._num_samples)] = 1.0 def update_w(self): for i in range(self._num_bases): idx = np.where(self.assigned==i)[0] n = len(idx) if n > 1: self.W[:,i] = np.sum(self.data[:,idx], axis=1)/n