comparison novelty.py @ 0:26838b1f560f

initial commit of a segmenter project
author mi tian
date Thu, 02 Apr 2015 18:09:27 +0100
parents
children c11ea9e0357f
comparison
equal deleted inserted replaced
-1:000000000000 0:26838b1f560f
1 #!/usr/bin/env python
2 # encoding: utf-8
3 """
4 novelty.py
5
6 Created by mi tian on 2015-04-02.
7 Copyright (c) 2015 __MyCompanyName__. All rights reserved.
8 """
9
10 import sys, os
11 import numpy as np
12 from scipy.signal import correlate2d, convolve2d
13
14 # from utils.PeakPickerUtil import PeakPicker
15
16 def getNoveltyCurve(ssm, kernel_size, normalise=False):
17 '''Return novelty score from ssm.'''
18
19 kernel_size = int(np.floor(kernel_size/2.0) + 1)
20 stripe = getDiagonalSlice(ssm, kernel_size)
21 kernel = gaussian_kernel(kernel_size)
22 xc = convolve2d(stripe,kernel,mode='same')
23 xc[abs(xc)>1e+10]=0.00001
24
25 novelty = xc[int(np.floor(xc.shape[0]/2.0)),:]
26 novelty = [0.0 if (np.isnan(x) or np.isinf(x) or x > 1e+100) else x for x in novelty]
27
28 if normalise:
29 novelty = (novelty - np.min(novelty)) / (np.max(novelty) - np.min(novelty))
30 return novelty
31
32 def getDiagonalSlice(ssm, width):
33 ''' Return a diagonal stripe of the ssm given its width, with 45 degrees rotation.
34 Note: requres 45 degrees rotated kernel also.'''
35 w = int(np.floor(width/2.0))
36 length = len(np.diagonal(ssm))
37 stripe = np.zeros((2*w+1,length))
38 # print 'diagonal', length, w, stripe.shape
39 for i in xrange(-w, w+1) :
40 stripe[w+i,:] = np.hstack(( np.zeros(int(np.floor(abs(i)/2.0))), np.diagonal(ssm,i), np.zeros(int(np.ceil(abs(i)/2.0))) ))
41 return stripe
42
43 def gaussian_kernel(size):
44 '''Create a gaussian tapered 45 degrees rotated checkerboard kernel.
45 TODO: Unit testing: Should produce this with kernel size 3:
46 0.1353 -0.3679 0.1353
47 0.3679 1.0000 0.3679
48 0.1353 -0.3679 0.1353
49 '''
50 n = float(np.ceil(size / 2.0))
51 kernel = np.zeros((size,size))
52 for i in xrange(1,size+1) :
53 for j in xrange(1,size+1) :
54 gauss = np.exp( -4.0 * (np.square( (i-n)/n ) + np.square( (j-n)/n )) )
55 # gauss = 1
56 if np.logical_xor( j - n > np.floor((i-n) / 2.0), j - n > np.floor((n-i) / 2.0) ) :
57 kernel[i-1,j-1] = -gauss
58 else:
59 kernel[i-1,j-1] = gauss
60
61 return kernel
62
63 def getNoveltyPeaks(ssm, kernel_size, peak_picker, normalise=False):
64 '''Detect segment boundaries in the ssm.'''
65 novelty = getNoveltyCurve(ssm, kernel_size, normalise=False)
66 smoothed_novelty, novelty_peaks = peak_picker.process(novelty)
67
68 return novelty, smoothed_novelty, novelty_peaks