annotate pymf/nmfals.py @ 19:890cfe424f4a tip

added annotations
author mitian
date Fri, 11 Dec 2015 09:47:40 +0000
parents 26838b1f560f
children
rev   line source
mi@0 1 #!/usr/bin/python
mi@0 2 #
mi@0 3 # Copyright (C) Christian Thurau, 2010.
mi@0 4 # Licensed under the GNU General Public License (GPL).
mi@0 5 # http://www.gnu.org/licenses/gpl.txt
mi@0 6 """
mi@0 7 PyMF Non-negative Matrix Factorization.
mi@0 8
mi@0 9 NMFALS: Class for Non-negative Matrix Factorization using alternating least
mi@0 10 squares optimization (requires cvxopt)
mi@0 11
mi@0 12 [1] Lee, D. D. and Seung, H. S. (1999), Learning the Parts of Objects by Non-negative
mi@0 13 Matrix Factorization, Nature 401(6755), 788-799.
mi@0 14 """
mi@0 15
mi@0 16
mi@0 17
mi@0 18 import numpy as np
mi@0 19 from cvxopt import solvers, base
mi@0 20 from nmf import NMF
mi@0 21
mi@0 22 __all__ = ["NMFALS"]
mi@0 23
mi@0 24 class NMFALS(NMF):
mi@0 25 """
mi@0 26 NMF(data, num_bases=4)
mi@0 27
mi@0 28
mi@0 29 Non-negative Matrix Factorization. Factorize a data matrix into two matrices
mi@0 30 s.t. F = | data - W*H | = | is minimal. H, and W are restricted to non-negative
mi@0 31 data. Uses the an alternating least squares procedure (quite slow for larger
mi@0 32 data sets)
mi@0 33
mi@0 34 Parameters
mi@0 35 ----------
mi@0 36 data : array_like, shape (_data_dimension, _num_samples)
mi@0 37 the input data
mi@0 38 num_bases: int, optional
mi@0 39 Number of bases to compute (column rank of W and row rank of H).
mi@0 40 4 (default)
mi@0 41
mi@0 42 Attributes
mi@0 43 ----------
mi@0 44 W : "data_dimension x num_bases" matrix of basis vectors
mi@0 45 H : "num bases x num_samples" matrix of coefficients
mi@0 46 ferr : frobenius norm (after calling .factorize())
mi@0 47
mi@0 48 Example
mi@0 49 -------
mi@0 50 Applying NMF to some rather stupid data set:
mi@0 51
mi@0 52 >>> import numpy as np
mi@0 53 >>> data = np.array([[1.0, 0.0, 2.0], [0.0, 1.0, 1.0]])
mi@0 54 >>> nmf_mdl = NMFALS(data, num_bases=2)
mi@0 55 >>> nmf_mdl.factorize(niter=10)
mi@0 56
mi@0 57 The basis vectors are now stored in nmf_mdl.W, the coefficients in nmf_mdl.H.
mi@0 58 To compute coefficients for an existing set of basis vectors simply copy W
mi@0 59 to nmf_mdl.W, and set compute_w to False:
mi@0 60
mi@0 61 >>> data = np.array([[1.5], [1.2]])
mi@0 62 >>> W = np.array([[1.0, 0.0], [0.0, 1.0]])
mi@0 63 >>> nmf_mdl = NMFALS(data, num_bases=2)
mi@0 64 >>> nmf_mdl.W = W
mi@0 65 >>> nmf_mdl.factorize(niter=1, compute_w=False)
mi@0 66
mi@0 67 The result is a set of coefficients nmf_mdl.H, s.t. data = W * nmf_mdl.H.
mi@0 68 """
mi@0 69
mi@0 70 def update_h(self):
mi@0 71 def updatesingleH(i):
mi@0 72 # optimize alpha using qp solver from cvxopt
mi@0 73 FA = base.matrix(np.float64(np.dot(-self.W.T, self.data[:,i])))
mi@0 74 al = solvers.qp(HA, FA, INQa, INQb)
mi@0 75 self.H[:,i] = np.array(al['x']).reshape((1,-1))
mi@0 76
mi@0 77 # float64 required for cvxopt
mi@0 78 HA = base.matrix(np.float64(np.dot(self.W.T, self.W)))
mi@0 79 INQa = base.matrix(-np.eye(self._num_bases))
mi@0 80 INQb = base.matrix(0.0, (self._num_bases,1))
mi@0 81
mi@0 82 map(updatesingleH, xrange(self._num_samples))
mi@0 83
mi@0 84
mi@0 85 def update_w(self):
mi@0 86 def updatesingleW(i):
mi@0 87 # optimize alpha using qp solver from cvxopt
mi@0 88 FA = base.matrix(np.float64(np.dot(-self.H, self.data[i,:].T)))
mi@0 89 al = solvers.qp(HA, FA, INQa, INQb)
mi@0 90 self.W[i,:] = np.array(al['x']).reshape((1,-1))
mi@0 91
mi@0 92 # float64 required for cvxopt
mi@0 93 HA = base.matrix(np.float64(np.dot(self.H, self.H.T)))
mi@0 94 INQa = base.matrix(-np.eye(self._num_bases))
mi@0 95 INQb = base.matrix(0.0, (self._num_bases,1))
mi@0 96
mi@0 97 map(updatesingleW, xrange(self._data_dimension))