comparison reeval/classification/perform_classification.m @ 4:a1f6a08f624c tip

Completed version 0.0.2
author Francisco Rodriguez Algarra <f.rodriguezalgarra@qmul.ac.uk>
date Tue, 03 Nov 2015 21:24:41 +0000
parents b1cd83874633
children
comparison
equal deleted inserted replaced
3:06a2a18a3960 4:a1f6a08f624c
1 function [results] = perform_classification(experiment, db, condition) 1 function [results] = perform_classification(experiment, db, condition)
2 2
3 db = svm_calc_kernel(db,'gaussian','square',1:8:size(db.features,2)); 3 db = svm_calc_kernel(db,'gaussian','square',1:8:size(db.features,2));
4
4 5
5 optt.kernel_type = 'gaussian'; 6 optt.kernel_type = 'gaussian';
6 optt.C = 2.^[0:4:8]; 7 optt.C = 2.^[0:4:8];
7 optt.gamma = 2.^[-16:4:-8]; 8 optt.gamma = 2.^[-16:4:-8];
8 optt.search_depth = 3; 9 optt.search_depth = 3;
9 optt.full_test_kernel = 1; 10
11 % This causes the accuracy to be lower than it could!
12 switch(experiment)
13 case('time_scat_l3')
14 optt.full_test_kernel = 0;
15 otherwise
16 optt.full_test_kernel = 1;
17 end
18
19 %
10 20
11 if nargin < 3 21 if nargin < 3
12 condition = cellstr(['none '; 'fault']); 22 condition = cellstr(['none '; 'fault']);
23 else
24 condition = cellstr(condition);
13 end 25 end
14 26
15 for ii=1:length(condition) 27 for ii=1:length(condition)
16 28
17 [train_set,test_set] = createFolds(condition{ii}); 29 [train_set,test_set] = createFolds(condition{ii});