Mercurial > hg > rhythm-melody-feature-evaluation
view util/smoothiecore.py @ 5:e8ebba3d6294
add smoothie
author | Maria Panteli |
---|---|
date | Tue, 14 Mar 2017 22:37:08 +0000 |
parents | |
children |
line wrap: on
line source
"""Smoothie A module aimed at melody salience and melody features. It contains * a frequency transform inspired by constant-Q transforms * an NMF-based melodic salience function * methods that transform this salience into melody features (not implemented) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. author: Matthias Mauch (addition of wrap_to_octave and get_chroma functions by Maria Panteli) """ import sys import numpy as np from scipy.signal import hann from scipy.sparse import csr_matrix import librosa p = {# smoothie q mapping parameters 'bpo' : 36, 'break1' : 500, 'break2' : 4000, 'f_max' : 8000, 'fs' : 16000, # spectrogram parameters 'step_size' : 160, 'use_A_wtg' : False, 'harm_remove' : False, # NMF and NMF dictionary parameters 's' : 0.85, # decay parameter 'n_harm' : 50, # I'm gonna do you no harm 'min_midi' : 25, 'max_midi' : 90.8, 'bps' : 5, 'n_iter' : 30 } def update_nmf_simple(H, W, V): """Update the gain matrix H using the multiplicative NMF update equation. Keyword arguments: H -- gain matrix W -- template matrix V -- target data matrix """ WHV = np.dot(W, H) ** (-1) * V H = H * np.dot(W.transpose(), WHV) return H def make_a_weight(f): """Return the values of A-weighting at the input frequencies f.""" f = np.array(f) zaehler = 12200 * 12200* (f**4) nenner = (f*f + 20.6*20.6) * np.sqrt((f*f + 107.7*107.7) * (f*f + 737.9*737.9)) * (f*f + 12200*12200) return zaehler / nenner def nextpow2(x): """Return the smallest integer n such that 2 ** n > x.""" return np.ceil(np.log2(x)) def get_smoothie_frequencies(p): """Calculate filter centres and widths for the smooth Q transform.""" # I think this calculation should be reconsidered in order to have # a more principled transition between linear and exponential n = 1.0 / (2.0**(1.0/p['bpo']) - 1) x = p['break1'] * 1.0 / n # first linear stretch # f = (np.arange(1, int(np.round(n)) + 1) * x).round().tolist() f = (np.arange(1, int(np.round(n)) + 1) * x).tolist() # exponential stretch while max(f) < p['break2']: f.append(max(f) * 2**(1.0/p['bpo'])) # final linear stretch lastdiff = f[-1] - f[-2] while max(f) < p['f_max']: f.append(max(f) + lastdiff) deltaf = np.diff(np.array(f)) f = f[:-1] return f, deltaf def create_smoothie_kernel(f, deltaf, fs): """Create a sparse matrix that maps the complex DFT to the complex smoothie representation. """ print >>sys.stdout, "[ SMOOTHIE Q kernel calculation ... ]" n_filter = len(f) n_fft = 2**nextpow2(np.ceil(fs/min(deltaf))) thresh = 0.0054 smoothie_kernel = np.zeros([n_fft, n_filter], np.complex64) for i_filter in range(n_filter-1, -1, -1): # descending # print i_filter Q = f[i_filter] * 1.0 / deltaf[i_filter] # local Q for this filter lgth = int(np.ceil(fs * 1.0 / deltaf[i_filter])) lgthinv = 1.0 / lgth offset = int(n_fft/2 - np.ceil(lgth * 0.5)) temp = hann(lgth) * lgthinv * \ np.exp(2j * np.pi * Q * (np.arange(lgth) - offset) * lgthinv) # print(sum(hann(lgth)), Q, lgth, offset) temp_kernel = np.zeros(n_fft, dtype = np.complex64) temp_kernel[np.arange(lgth) + offset] = temp spec_kernel = np.fft.fft(temp_kernel) spec_kernel[abs(spec_kernel) <= thresh] = 0 smoothie_kernel[:,i_filter] = spec_kernel return csr_matrix(smoothie_kernel.conj()/n_fft) def smoothie_q_spectrogram(x, p): """Calculate the actual spectrogram with smooth Q frequencies""" print >>sys.stdout, "[ SMOOTHIE Q spectrogram ... ]" # precalculate smoothie kernel f, deltaf = get_smoothie_frequencies(p) smoothie_kernel = create_smoothie_kernel(f, deltaf, p['fs']) n_fft, n_filter = smoothie_kernel.shape # some preparations n_sample = len(x) # n_frame = int(np.floor(n_sample / p['step_size'])) n_frame = int(np.ceil(n_sample / float(p['step_size']))) # added mp t = (np.arange(n_frame) * p['step_size']) * 1.0 / p['fs'] smoothie_kernelT = smoothie_kernel.T # allocate s = np.zeros((n_filter, n_frame), dtype = np.complex64) # pad (if wanted) x = np.concatenate((np.zeros(n_fft/2), x, np.zeros(n_fft/2))) for i_frame in range(n_frame): smpl = p['step_size'] * i_frame block = x[smpl + np.arange(n_fft)] s[:, i_frame] = smoothie_kernelT.dot(np.fft.fft(block)) if p['use_A_wtg']: a_wtg = make_a_weight(f) s = s * a_wtg[:, np.newaxis] return s, t def mel_triangles(input_f): """Make matrix with mel filters at the given frequencies. Warning: this is a very coarse mel filterbank. """ n_linearfilters = 3 n_logfilters0 = 30 # just something high, will be pruned later linear_spacing = 100 log_spacing = 6.0/4 n_filter0 = n_linearfilters + n_logfilters0 freqs = np.zeros(n_filter0+2) # includes one more on either side, hence +2 freqs[range(n_linearfilters+1)] = \ np.arange(-1,n_linearfilters) * linear_spacing freqs[range(n_linearfilters+1, n_filter0+2)] = \ freqs[n_linearfilters] * log_spacing ** np.arange(1, n_logfilters0+2) centre_freqs = freqs[1:-1] lower_freqs = freqs[0:-2] upper_freqs = freqs[2:] n_filter = list(np.nonzero(lower_freqs < max(input_f)))[0][-1] + 1 n_input_f = len(input_f) mtr = np.zeros((n_input_f, n_filter)) for i_filter in range(n_filter): for i_freq in range(n_input_f): if input_f[i_freq] > lower_freqs[i_filter] \ and input_f[i_freq] <= upper_freqs[i_filter]: if input_f[i_freq] <= centre_freqs[i_filter]: mtr[i_freq, i_filter] = \ (input_f[i_freq] - lower_freqs[i_filter]) * 1.0 / \ (centre_freqs[i_filter] - lower_freqs[i_filter]) else: mtr[i_freq, i_filter] = \ 1 - (input_f[i_freq] - centre_freqs[i_filter]) / \ (upper_freqs[i_filter] - centre_freqs[i_filter]) return mtr def create_smoothie_nfm_dict(smoothie_kernel, filterf, p): """Create dictionary matrix with note templates.""" n_note = int((p['max_midi'] - p['min_midi']) * p['bps'] + 1) n_fft, n_filter = smoothie_kernel.shape t = ((np.arange(n_fft) + 1) - ((n_fft + 1)*0.5))/p['fs'] mtr = mel_triangles(filterf) n_template = n_note + mtr.shape[1] w = np.zeros((n_filter, n_template), dtype = np.complex64) w[:,n_note:] = mtr f0s = [] smoothie_kernelT = smoothie_kernel.T for i_note in range(n_note): midi = p['min_midi'] + i_note * 1.0 / p['bps'] f0 = 440 * 2 ** ((midi-69)*1.0/12) f0s.append(f0) sig = np.zeros(len(t)) for i_harm in range(p['n_harm']): f = f0 * (i_harm + 1) if f > p['fs'] * 0.5: continue x = np.sin(2*np.pi*f*t) * p['s']**(i_harm) sig += x w[:, i_note] = smoothie_kernelT.dot(np.fft.fft(sig)) for i in range(mtr.shape[1]): f0s.append(np.nan) w = abs(w) col_sums = w.sum(axis = 0) w = w / col_sums[np.newaxis, :] # normalisation return w, np.array(f0s) def smoothie_salience(x, p, do_tune = False): """Calculate melodic salience.""" print >>sys.stdout, "[ SMOOTHIE Q salience ... ]" # precalculate nmf kernel f, deltaf = get_smoothie_frequencies(p) smoothie_kernel = create_smoothie_kernel(f, deltaf, p['fs']) w, f0s = create_smoothie_nfm_dict(smoothie_kernel, f, p) # calculate smoothiegram s, t = smoothie_q_spectrogram(x, p) s[s==0] = np.spacing(1) # very small number s = abs(s) # run NMF n_frame = len(t) print >>sys.stdout, "[ SMOOTHIE Q : NMF updates ... ]" sal = np.ones((w.shape[1], n_frame)) for i_iter in range(p['n_iter']): sal = update_nmf_simple(sal, w, s) #if do_tune: # error("Tuning isn't yet implemented in the Python version") return sal, t, f0s def qnormalise(x, q, dim): """Normalise by sum.""" nrm = np.sum(x**q, axis=dim, keepdims=True)**(1./float(q)) nrmmatrix = np.repeat(nrm, x.shape[0], axis=0) x = x / nrmmatrix return x def wrap_to_octave(sal, param): """Wrap pitch to octave.""" epsilon = 0.00001 nsal = qnormalise(sal, 2, 0) step = 1. / float(param['bps']) NMFpitch = np.arange(param['min_midi'], param['max_midi'] + step, step) nNote = len(NMFpitch) nsal = nsal[0:nNote, :] allsal = nsal allsal[nsal < epsilon] = epsilon # chroma mapping n = param['bps'] * 12 mmap = np.tile(np.eye(n), (1, 5)) chroma = mmap.dot(allsal[0:(n * 5), :]) return chroma def get_chroma(filename = 'test.wav'): """Get chroma from audio file.""" y, sr = librosa.load(filename, sr = None) p['fs'] = sr p['step_size'] = int(round(0.005 * p['fs'])) # default hop size 0.005 sec. sal, t, f0s = smoothie_salience(y, p) sal = sal[-np.isnan(f0s), :] chroma = wrap_to_octave(sal, p) chromasr = p['fs'] / float(p['step_size']) return chroma, chromasr