Mercurial > hg > rhythm-melody-feature-evaluation
view util/scale_transform.py @ 1:c4ef4a02fc19
core functions
author | Maria Panteli |
---|---|
date | Mon, 01 Aug 2016 21:10:31 -0400 |
parents | |
children |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Created on Mon Aug 17 13:37:00 2015 @author: mariapanteli """ """Scale transform descriptor from mel spectrogram""" import numpy import librosa import scipy.signal class ScaleTransform: def __init__(self): self.y = None self.sr = None self.nmels = 40 self.melspec = None self.melsr = None self.op = None self.opmellin = None def load_audiofile(self, filename='test.wav', sr=None): """Load audio""" self.y, self.sr = librosa.load(filename, sr=sr) def mel_spectrogram(self, y=None, sr=None): """Get mel spectrogram""" if self.y is None: self.y = y if self.sr is None: self.sr = sr win1 = int(round(0.04 * self.sr)) hop1 = int(round(win1 / 8.)) nfft1 = int(2 ** numpy.ceil(numpy.log2(win1))) D = numpy.abs(librosa.stft(self.y, n_fft=nfft1, hop_length=hop1, win_length=win1, window=scipy.signal.hamming)) ** 2 melspec = librosa.feature.melspectrogram(S=D, sr=self.sr, n_mels=self.nmels, fmax=8000) melsr = self.sr/float(hop1) self.melspec = melspec self.melsr = melsr def post_process_spec(self, melspec=None, medianfilt=True, sqrt=True, diff=True, subtractmean=True, halfwave=True, maxnormal=True): """Some post processing of the mel spectrogram""" if self.melspec is None: self.melspec = melspec if medianfilt: ks = int(0.1 * self.melsr) # 100ms kernel size if ks % 2 == 0: ks += 1 # ks must be odd for i in range(self.nmels): self.melspec[i, :] = scipy.signal.medfilt(self.melspec[i, :], kernel_size=ks) if sqrt: self.melspec = self.melspec ** .5 if diff: # append one frame before diff to keep number of frames the same self.melspec = numpy.concatenate((self.melspec, self.melspec[:, -1, None]), axis=1) self.melspec = numpy.diff(self.melspec, n=1, axis=1) if subtractmean: mean = self.melspec.mean(axis=1) mean.shape = (mean.shape[0], 1) self.melspec = self.melspec - mean if halfwave: self.melspec[numpy.where(self.melspec < 0)] = 0 if maxnormal: self.melspec = self.melspec / self.melspec.max() def onset_patterns(self, melspec=None, melsr=None, center=False): """Get rhythm periodicities by applying stft in each mel band""" if self.melspec is None: self.melspec = melspec if self.melsr is None: self.melsr = melsr win2 = int(round(8 * self.melsr)) hop2 = int(round(0.5 * self.melsr)) nfft2 = int(2**numpy.ceil(numpy.log2(win2))) # some preprocessing for the second frame decomposition melspectemp = self.melspec if melspectemp.shape[1] < nfft2: # if buffer too short pad with zeros to have at least one 8-sec window nzeros = nfft2 - melspectemp.shape[1] melspectemp = numpy.concatenate([numpy.zeros((self.nmels, int(numpy.ceil(nzeros / 2.)))), melspectemp, numpy.zeros((self.nmels,int(numpy.ceil(nzeros / 2.))))], axis=1) temp = numpy.abs(librosa.stft(y=melspectemp[0, :], win_length=win2, hop_length=hop2, n_fft=nfft2, window=scipy.signal.hamming, center=center)) nframes = temp.shape[1] # filter periodicities in the range 30-960 bpm freqresinbpm = float(self.melsr) / float(nfft2/2.)*60. minmag = int(numpy.floor(30. / freqresinbpm)) # min tempo 30bpm maxmag = int(numpy.ceil(960. / freqresinbpm)) # max tempo 960 bpm magsinds = range(minmag, maxmag) # indices of selected stft magnitudes # loop over all mel_bands and get rhythm periodicities (stft magnitudes) nmags = len(magsinds) fft2 = numpy.zeros((self.nmels, nmags, nframes)) for i in range(self.nmels): fftmags = numpy.abs(librosa.stft(y=melspectemp[i, :], win_length=win2, hop_length=hop2, n_fft=nfft2, window=scipy.signal.hamming, center=center)) fftmags = fftmags[magsinds, :] fft2[i, :, :] = fftmags op = fft2 self.op = op def post_process_op(self, median_filt=True): """Some smoothing of the onset patterns""" if median_filt: hop2 = int(round(0.5 * self.melsr)) ssr = self.melsr/float(hop2) ks = int(0.5 * ssr) # 100ms kernel size if ks % 2 == 0: ks += 1 # ks must be odd nmels, nmags, nframes = self.op.shape for i in range(nmels): for j in range(nframes): self.op[i, :, j] = numpy.convolve(self.op[i, :, j], numpy.ones(ks) / ks, mode='same') def mellin_transform(self, op=None): """ Apply mellin transform to remove tempo (scale) information. Code adapted from a MATLAB implementation by Andre Holzapfel. """ if self.op is None: self.op = op nmels, nmags, nframes = self.op.shape nmagsout = 200 u_max = numpy.log(nmags) delta_c = numpy.pi / u_max c_max = nmagsout c = numpy.arange(delta_c, c_max, delta_c) k = range(1, nmags) exponent = 0.5 - c * 1j normMat = 1. / (exponent * numpy.sqrt(2 * numpy.pi)) normMat.shape = (normMat.shape[0], 1) normMat = numpy.repeat(normMat.T, nmels, axis=0) kernelMat = numpy.asarray([numpy.power(ki, exponent) for ki in k]) opmellin = numpy.zeros((nmels, nmagsout, nframes)) for i in range(nframes): self.op[:, -1, i] = 0 deltaMat = - numpy.diff(self.op[:, :, i]) mellin = numpy.abs(numpy.dot(deltaMat, kernelMat) * normMat) opmellin[:, :, i] = mellin[:, :nmagsout] self.opmellin = opmellin def post_process_mellin(self, opmellin=None, normFrame=True, aveBands=False): """Some post processing of the scale transform""" if self.opmellin is None: self.opmellin = opmellin if aveBands: self.opmellin = numpy.mean(self.opmellin, axis=0, keepdims=True) nmels, nmags, nframes = self.opmellin.shape self.opmellin = self.opmellin.reshape((nmels*nmags, nframes)) if normFrame: min_opmellin = numpy.amin(self.opmellin, axis=0, keepdims=True) max_opmellin = numpy.amax(self.opmellin, axis=0, keepdims=True) denom = max_opmellin - min_opmellin denom[denom==0] = 1 # avoid division by 0 if frame is all 0s-silent self.opmellin = (self.opmellin - min_opmellin) / denom def get_scale_transform(self, filename='test.wav'): """Return scale transform for filename""" self.load_audiofile(filename=filename) self.mel_spectrogram() self.post_process_spec() self.onset_patterns() self.post_process_op() self.mellin_transform() self.post_process_mellin(aveBands=True) return self.opmellin if __name__ == '__main__': op = ScaleTransform() op.get_scale_transform()