Mercurial > hg > qm-vamp-plugins
view plugins/AdaptiveSpectrogram.h @ 266:d04675d44928 tip master
Refer to SDK from Github
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 02 Jun 2021 14:41:26 +0100 |
parents | 93355d263f8e |
children |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* QM Vamp Plugin Set Centre for Digital Music, Queen Mary, University of London. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #ifndef _ADAPTIVE_SPECTROGRAM_H_ #define _ADAPTIVE_SPECTROGRAM_H_ #include <vamp-sdk/Plugin.h> #include <cmath> #include <vector> #include <dsp/transforms/FFT.h> #include <base/Window.h> #include <thread/Thread.h> #include <thread/AsynchronousTask.h> #include <thread/BlockAllocator.h> class Decimator; class AdaptiveSpectrogram : public Vamp::Plugin { public: AdaptiveSpectrogram(float inputSampleRate); virtual ~AdaptiveSpectrogram(); bool initialise(size_t channels, size_t stepSize, size_t blockSize); void reset(); InputDomain getInputDomain() const { return TimeDomain; } std::string getIdentifier() const; std::string getName() const; std::string getDescription() const; std::string getMaker() const; int getPluginVersion() const; std::string getCopyright() const; size_t getPreferredStepSize() const; size_t getPreferredBlockSize() const; ParameterList getParameterDescriptors() const; float getParameter(std::string id) const; void setParameter(std::string id, float value); OutputList getOutputDescriptors() const; FeatureSet process(const float *const *inputBuffers, Vamp::RealTime timestamp); FeatureSet getRemainingFeatures(); protected: int m_w; int m_n; bool m_coarse; bool m_threaded; int m_decFactor; float *m_buffer; int m_buflen; Decimator *m_decimator; struct Spectrogram { int resolution; int width; double **data; Spectrogram(int r, int w) : resolution(r), width(w) { data = new double *[width]; for (int i = 0; i < width; ++i) data[i] = new double[resolution]; } ~Spectrogram() { for (int i = 0; i < width; ++i) delete[] data[i]; delete[] data; } }; struct Spectrograms { int minres; int maxres; int n; Spectrogram **spectrograms; Spectrograms(int mn, int mx, int widthofmax) : minres(mn), maxres(mx) { n = log2(maxres/minres) + 1; spectrograms = new Spectrogram *[n]; int r = mn; for (int i = 0; i < n; ++i) { spectrograms[i] = new Spectrogram(r, widthofmax * (mx / r)); r = r * 2; } } ~Spectrograms() { for (int i = 0; i < n; ++i) { delete spectrograms[i]; } delete[] spectrograms; } }; struct Cutting { enum Cut { Horizontal, Vertical, Finished }; Cut cut; Cutting *first; Cutting *second; double cost; double value; BlockAllocator *allocator; ~Cutting() { if (first) first->erase(); if (second) second->erase(); } void erase() { if (allocator) { if (first) first->erase(); if (second) second->erase(); allocator->deallocate(this); } else { delete this; } } }; class FFTThread : public AsynchronousTask { public: FFTThread(int w) : m_window(HanningWindow, w) { m_w = w; m_fft = new FFTReal(m_w); m_rin = new double[m_w]; m_rout = new double[m_w]; m_iout = new double[m_w]; } ~FFTThread() { delete[] m_rin; delete[] m_rout; delete[] m_iout; delete m_fft; } int getW() const { return m_w; } void startCalculation(const float *timeDomain, Spectrograms &s, int res, int maxwidth) { setParameters(timeDomain, s, res, maxwidth); startTask(); } void await() { awaitTask(); } void setParameters(const float *timeDomain, Spectrograms &s, int res, int maxwidth) { m_in = timeDomain; m_s = &s; m_res = res; m_maxwid = maxwidth; } void performTask() { for (int i = 0; i < m_maxwid / m_w; ++i) { int origin = m_maxwid/4 - m_w/4; // for 50% overlap for (int j = 0; j < m_w; ++j) { m_rin[j] = m_in[origin + i * m_w/2 + j]; } m_window.cut(m_rin); m_fft->forward(m_rin, m_rout, m_iout); for (int j = 0; j < m_w/2; ++j) { int k = j+1; // include Nyquist but not DC double mag = sqrt(m_rout[k] * m_rout[k] + m_iout[k] * m_iout[k]); double scaled = mag / (m_w/2); m_s->spectrograms[m_res]->data[i][j] = scaled; } } } private: Window<double> m_window; FFTReal *m_fft; const float *m_in; double *m_rin; double *m_rout; double *m_iout; Spectrograms *m_s; int m_res; int m_w; int m_maxwid; }; typedef std::map<int, FFTThread *> FFTMap; FFTMap m_fftThreads; class CutThread : public AsynchronousTask { public: CutThread(const AdaptiveSpectrogram *as) : m_as(as), m_result(0) { m_allocator = new BlockAllocator(sizeof(Cutting)); } ~CutThread() { delete m_allocator; } void cut(const Spectrograms &s, int res, int x, int y, int h) { m_s = &s; m_res = res; m_x = x; m_y = y; m_h = h; startTask(); } Cutting *get() { awaitTask(); return m_result; } protected: void performTask() { m_result = m_as->cut(*m_s, m_res, m_x, m_y, m_h, m_allocator); } private: const AdaptiveSpectrogram *m_as; BlockAllocator *m_allocator; const Spectrograms *m_s; int m_res; int m_x; int m_y; int m_h; Cutting *m_result; }; mutable std::vector<CutThread *> m_cutThreads; mutable bool m_threadsInUse; inline double xlogx(double x) const { if (x == 0.0) return 0.0; else return x * log(x); } inline double cost(const Spectrogram &s, int x, int y) const { return xlogx(s.data[x][y]); } inline double value(const Spectrogram &s, int x, int y) const { return s.data[x][y]; } inline double normalize(double vcost, double venergy) const { return (vcost + (venergy * log(venergy))) / venergy; } inline bool isResolutionWanted(const Spectrograms &s, int res) const { if (!m_coarse) return true; if (res == s.minres || res == s.maxres) return true; int n = 0; for (int r = res; r > s.minres; r >>= 1) ++n; return ((n & 0x1) == 0); } Cutting *cut(const Spectrograms &, int res, int x, int y, int h, BlockAllocator *allocator) const; void getSubCuts(const Spectrograms &, int res, int x, int y, int h, Cutting **top, Cutting **bottom, Cutting **left, Cutting **right, BlockAllocator *allocator) const; void printCutting(Cutting *, std::string) const; void assemble(const Spectrograms &, const Cutting *, std::vector<std::vector<float> > &, int x, int y, int w, int h) const; }; #endif