Mercurial > hg > qm-vamp-plugins
view plugins/AdaptiveSpectrogram.h @ 105:abbc482aaad2
* Switch CutThread to AsynchronousTask; introduce FFTThread as well and
make the FFT calculations concurrent
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Tue, 12 May 2009 21:05:44 +0000 |
parents | d8ad747eb907 |
children | 35f2138c6891 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* QM Vamp Plugin Set Centre for Digital Music, Queen Mary, University of London. All rights reserved. */ #ifndef _ADAPTIVE_SPECTROGRAM_H_ #define _ADAPTIVE_SPECTROGRAM_H_ #include <vamp-sdk/Plugin.h> #include <cmath> #include <vector> #include <dsp/transforms/FFT.h>//!!! #include "thread/Thread.h" class AdaptiveSpectrogram : public Vamp::Plugin { public: AdaptiveSpectrogram(float inputSampleRate); virtual ~AdaptiveSpectrogram(); bool initialise(size_t channels, size_t stepSize, size_t blockSize); void reset(); InputDomain getInputDomain() const { return TimeDomain; } std::string getIdentifier() const; std::string getName() const; std::string getDescription() const; std::string getMaker() const; int getPluginVersion() const; std::string getCopyright() const; size_t getPreferredStepSize() const; size_t getPreferredBlockSize() const; ParameterList getParameterDescriptors() const; float getParameter(std::string id) const; void setParameter(std::string id, float value); OutputList getOutputDescriptors() const; FeatureSet process(const float *const *inputBuffers, Vamp::RealTime timestamp); FeatureSet getRemainingFeatures(); protected: int m_w; int m_n; struct Spectrogram { int resolution; int width; double **data; Spectrogram(int r, int w) : resolution(r), width(w) { data = new double *[width]; for (int i = 0; i < width; ++i) data[i] = new double[resolution]; } ~Spectrogram() { for (int i = 0; i < width; ++i) delete[] data[i]; delete[] data; } }; struct Spectrograms { int minres; int maxres; int n; Spectrogram **spectrograms; Spectrograms(int mn, int mx, int widthofmax) : minres(mn), maxres(mx) { n = log2(maxres/minres) + 1; spectrograms = new Spectrogram *[n]; int r = mn; for (int i = 0; i < n; ++i) { spectrograms[i] = new Spectrogram(r, widthofmax * (mx / r)); r = r * 2; } } ~Spectrograms() { for (int i = 0; i < n; ++i) { delete spectrograms[i]; } delete[] spectrograms; } }; struct Cutting { enum Cut { Horizontal, Vertical, Finished }; Cut cut; Cutting *first; Cutting *second; double cost; double value; ~Cutting() { delete first; delete second; } }; class FFTThread : public AsynchronousTask { public: FFTThread() { } ~FFTThread() { } void calculate(const float *timeDomain, Spectrograms &s, int res, int width, int maxwidth) { m_in = timeDomain; m_s = &s; m_res = res; m_w = width; m_maxwid = maxwidth; startTask(); } void await() { awaitTask(); } protected: void performTask() { double *tmpin = new double[m_w]; double *tmprout = new double[m_w]; double *tmpiout = new double[m_w]; //!!! use window object for (int i = 0; i < m_maxwid / m_w; ++i) { int origin = m_maxwid/4 - m_w/4; // for 50% overlap for (int j = 0; j < m_w; ++j) { double mul = 0.50 - 0.50 * cos((2 * M_PI * j) / m_w); tmpin[j] = m_in[origin + i * m_w/2 + j] * mul; } FFT::process(m_w, false, tmpin, 0, tmprout, tmpiout); for (int j = 0; j < m_w/2; ++j) { int k = j+1; // include Nyquist but not DC double mag = sqrt(tmprout[k] * tmprout[k] + tmpiout[k] * tmpiout[k]); double scaled = mag / (m_w/2); m_s->spectrograms[m_res]->data[i][j] = scaled; } } delete[] tmpin; delete[] tmprout; delete[] tmpiout; } private: const float *m_in; Spectrograms *m_s; int m_res; int m_w; int m_maxwid; }; std::vector<FFTThread *> m_fftThreads; class CutThread : public AsynchronousTask { public: CutThread(const AdaptiveSpectrogram *as) : m_as(as), m_result(0) { } ~CutThread() { } void cut(const Spectrograms &s, int res, int x, int y, int h) { m_s = &s; m_res = res; m_x = x; m_y = y; m_h = h; startTask(); } Cutting *get() { awaitTask(); return m_result; } protected: void performTask() { m_result = m_as->cut(*m_s, m_res, m_x, m_y, m_h); } private: const AdaptiveSpectrogram *m_as; const Spectrograms *m_s; int m_res; int m_x; int m_y; int m_h; Cutting *m_result; }; mutable std::vector<CutThread *> m_cutThreads;//!!! mutable blargh ///!!! Mutex m_threadMutex; mutable bool m_first; //!!! gross double xlogx(double x) const { if (x == 0.0) return 0.0; else return x * log(x); } double cost(const Spectrogram &s, int x, int y) const { return xlogx(s.data[x][y]); } double value(const Spectrogram &s, int x, int y) const { return s.data[x][y]; } Cutting *cut(const Spectrograms &, int res, int x, int y, int h) const; void getSubCuts(const Spectrograms &, int res, int x, int y, int h, Cutting *&top, Cutting *&bottom, Cutting *&left, Cutting *&right) const; void printCutting(Cutting *, std::string) const; void assemble(const Spectrograms &, const Cutting *, std::vector<std::vector<float> > &, int x, int y, int w, int h) const; }; #endif