view plugins/KeyDetect.cpp @ 60:90fa946fda40

* Add key strength plot to key detector * Fix vector overrun in similarity plugin if some empty frames have been encountered * Fix uninitialised m_count in MFCC plugin * Doc update
author Chris Cannam <c.cannam@qmul.ac.uk>
date Fri, 01 Feb 2008 16:47:39 +0000
parents 4fe04e706839
children b084e87b83e4
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    QM Vamp Plugin Set

    Centre for Digital Music, Queen Mary, University of London.
    All rights reserved.
*/

#include "KeyDetect.h"

using std::string;
using std::vector;
//using std::cerr;
using std::endl;

#include <cmath>


// Order for circle-of-5ths plotting
static int conversion[24] =
{ 7, 12, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2,
  16, 21, 14, 19, 24, 17, 22, 15, 20, 13, 18, 23 };


KeyDetector::KeyDetector(float inputSampleRate) :
    Plugin(inputSampleRate),
    m_stepSize(0),
    m_blockSize(0),
    m_tuningFrequency(440),
    m_length(10),
    m_getKeyMode(0),
    m_inputFrame(0),
    m_prevKey(-1)
{
}

KeyDetector::~KeyDetector()
{
    delete m_getKeyMode;
    if ( m_inputFrame ) {
        delete [] m_inputFrame;
    }
}

string
KeyDetector::getIdentifier() const
{
    return "qm-keydetector";
}

string
KeyDetector::getName() const
{
    return "Key Detector";
}

string
KeyDetector::getDescription() const
{
    return "Estimate the key of the music";
}

string
KeyDetector::getMaker() const
{
    return "Queen Mary, University of London";
}

int
KeyDetector::getPluginVersion() const
{
    return 3;
}

string
KeyDetector::getCopyright() const
{
    return "Plugin by Katy Noland and Christian Landone.  Copyright (c) 2006-2008 QMUL - All Rights Reserved";
}

KeyDetector::ParameterList
KeyDetector::getParameterDescriptors() const
{
    ParameterList list;

    ParameterDescriptor desc;
    desc.identifier = "tuning";
    desc.name = "Tuning Frequency";
    desc.description = "Frequency of concert A";
    desc.unit = "Hz";
    desc.minValue = 420;
    desc.maxValue = 460;
    desc.defaultValue = 440;
    desc.isQuantized = false;
    list.push_back(desc);
    
    desc.identifier = "length";
    desc.name = "Window Length";
    desc.unit = "chroma frames";
    desc.description = "Number of chroma analysis frames per key estimation";
    desc.minValue = 1;
    desc.maxValue = 30;
    desc.defaultValue = 10;
    desc.isQuantized = true;
    desc.quantizeStep = 1;
    list.push_back(desc);

    return list;
}

float
KeyDetector::getParameter(std::string param) const
{
    if (param == "tuning") {
        return m_tuningFrequency;
    }
    if (param == "length") {
        return m_length;
    }
    std::cerr << "WARNING: KeyDetector::getParameter: unknown parameter \""
              << param << "\"" << std::endl;
    return 0.0;
}

void
KeyDetector::setParameter(std::string param, float value)
{
    if (param == "tuning") {
        m_tuningFrequency = value;
    } else if (param == "length") {
        m_length = int(value + 0.1);
    } else {
        std::cerr << "WARNING: KeyDetector::setParameter: unknown parameter \""
                  << param << "\"" << std::endl;
    }
}

bool
KeyDetector::initialise(size_t channels, size_t stepSize, size_t blockSize)
{
    if (m_getKeyMode) {
        delete m_getKeyMode;
        m_getKeyMode = 0;
    }

    if (channels < getMinChannelCount() ||
	channels > getMaxChannelCount()) return false;

    m_getKeyMode = new GetKeyMode(int(m_inputSampleRate + 0.1),
                                  m_tuningFrequency,
                                  m_length, m_length);

    m_stepSize = m_getKeyMode->getHopSize();
    m_blockSize = m_getKeyMode->getBlockSize();

    if (stepSize != m_stepSize || blockSize != m_blockSize) {
        std::cerr << "KeyDetector::initialise: ERROR: step/block sizes "
                  << stepSize << "/" << blockSize << " differ from required "
                  << m_stepSize << "/" << m_blockSize << std::endl;
        delete m_getKeyMode;
        m_getKeyMode = 0;
        return false;
    }

    m_inputFrame = new double[m_blockSize];

    m_prevKey = -1;
	
    return true;
}

void
KeyDetector::reset()
{
    if (m_getKeyMode) {
        delete m_getKeyMode;
        m_getKeyMode = new GetKeyMode(int(m_inputSampleRate + 0.1),
                                      m_tuningFrequency,
                                      m_length, m_length);
    }

    if (m_inputFrame) {
        for( unsigned int i = 0; i < m_blockSize; i++ ) {
            m_inputFrame[ i ] = 0.0;
        }
    }

    m_prevKey = -1;
}


KeyDetector::OutputList
KeyDetector::getOutputDescriptors() const
{
    OutputList list;

    OutputDescriptor d;
    d.identifier = "tonic";
    d.name = "Tonic Pitch";
    d.unit = "";
    d.description = "Tonic of the estimated key (from C = 1 to B = 12)";
    d.hasFixedBinCount = true;
    d.binCount = 1;
    d.hasKnownExtents = true;
    d.isQuantized = true;
    d.minValue = 1;
    d.maxValue = 12;
    d.quantizeStep = 1;
    d.sampleType = OutputDescriptor::OneSamplePerStep;
    list.push_back(d);

    d.identifier = "mode";
    d.name = "Key Mode";
    d.unit = "";
    d.description = "Major or minor mode of the estimated key (major = 0, minor = 1)";
    d.hasFixedBinCount = true;
    d.binCount = 1;
    d.hasKnownExtents = true;
    d.isQuantized = true;
    d.minValue = 0;
    d.maxValue = 1;
    d.quantizeStep = 1;
    d.sampleType = OutputDescriptor::OneSamplePerStep;
    list.push_back(d);

    d.identifier = "key";
    d.name = "Key";
    d.unit = "";
    d.description = "Estimated key (from C major = 1 to B major = 12 and C minor = 13 to B minor = 24)";
    d.hasFixedBinCount = true;
    d.binCount = 1;
    d.hasKnownExtents = true;
    d.isQuantized = true;
    d.minValue = 1;
    d.maxValue = 24;
    d.quantizeStep = 1;
    d.sampleType = OutputDescriptor::OneSamplePerStep;
    list.push_back(d);

    d.identifier = "keystrength";
    d.name = "Key Strength Plot";
    d.unit = "";
    d.description = "Correlation of the chroma vector with stored key profile for each major and minor key";
    d.hasFixedBinCount = true;
    d.binCount = 25;
    d.hasKnownExtents = false;
    d.isQuantized = false;
    d.sampleType = OutputDescriptor::OneSamplePerStep;
    for (int i = 0; i < 24; ++i) {
        if (i == 12) d.binNames.push_back(" ");
        int idx = conversion[i];
        std::string label = getKeyName(idx > 12 ? idx-12 : idx);
        if (i < 12) label += " major";
        else label += " minor";
        d.binNames.push_back(label);
    }
    list.push_back(d);

    return list;
}

KeyDetector::FeatureSet
KeyDetector::process(const float *const *inputBuffers,
                     Vamp::RealTime now)
{
    if (m_stepSize == 0) {
	return FeatureSet();
    }

    FeatureSet returnFeatures;

    for ( unsigned int i = 0 ; i < m_blockSize; i++ ) {
        m_inputFrame[i] = (double)inputBuffers[0][i];
    }

//    int key = (m_getKeyMode->process(m_inputFrame) % 24);
    int key = m_getKeyMode->process(m_inputFrame);
    int minor = m_getKeyMode->isModeMinor(key);
    int tonic = key;
    if (tonic > 12) tonic -= 12;

    int prevTonic = m_prevKey;
    if (prevTonic > 12) prevTonic -= 12;

    if (tonic != prevTonic) {
        Feature feature;
        feature.hasTimestamp = false;
//        feature.timestamp = now;
        feature.values.push_back((float)tonic);
        feature.label = getKeyName(tonic);
        returnFeatures[0].push_back(feature); // tonic
    }

    if (minor != (m_getKeyMode->isModeMinor(m_prevKey))) {
        Feature feature;
        feature.hasTimestamp = false;
        feature.values.push_back((float)minor);
        feature.label = (minor ? "Minor" : "Major");
        returnFeatures[1].push_back(feature); // mode
    }

    if (key != m_prevKey) {
        Feature feature;
//        feature.hasTimestamp = true;
        feature.hasTimestamp = false;
//        feature.timestamp = now;
        feature.values.push_back((float)key);
        feature.label = std::string(getKeyName(tonic));
        if (minor) feature.label += " minor";
        else feature.label += " major";
        returnFeatures[2].push_back(feature); // key
//		cerr << "int key = "<<key<<endl;
//		cerr << "int tonic = "<<tonic<<endl;
//		cerr << "feature label = "<<feature.label<<endl;
    }

    m_prevKey = key;

    Feature ksf;
    ksf.values.reserve(25);
    double *keystrengths = m_getKeyMode->getKeyStrengths();
    for (int i = 0; i < 24; ++i) {
        if (i == 12) ksf.values.push_back(-1);
        ksf.values.push_back(keystrengths[conversion[i]-1]);
    }
    ksf.hasTimestamp = false;
    returnFeatures[3].push_back(ksf);

    return returnFeatures;
}

KeyDetector::FeatureSet
KeyDetector::getRemainingFeatures()
{
    return FeatureSet();
}


size_t
KeyDetector::getPreferredStepSize() const
{
    if (!m_stepSize) {
        GetKeyMode gkm(int(m_inputSampleRate + 0.1),
                       m_tuningFrequency, m_length, m_length);
        m_stepSize = gkm.getHopSize();
        m_blockSize = gkm.getBlockSize();
    }
    return m_stepSize;
}

size_t
KeyDetector::getPreferredBlockSize() const
{
    if (!m_blockSize) {
        GetKeyMode gkm(int(m_inputSampleRate + 0.1),
                       m_tuningFrequency, m_length, m_length);
        m_stepSize = gkm.getHopSize();
        m_blockSize = gkm.getBlockSize();
    }
    return m_blockSize;
}

const char *
KeyDetector::getKeyName(int index) const
{
    // Keys are numbered with 1 => C, 12 => B
    // This is based on chromagram base set to a C in qm-dsp's GetKeyMode.cpp
    static const char *names[] = {
        "C", "C# / Db", "D", "D# / Eb",
        "E", "F", "F# / Gb", "G",
        "G# / Ab", "A", "A# / Bb", "B"
    };
    if (index < 1 || index > 12) {
        return "(unknown)";
    }
    return names[index - 1]; //'-1' because our names array starts from 0 
}