view plugins/BeatDetect.cpp @ 26:166cc6d39390

* Add note onset output * Add broadband energy rise detection function
author Chris Cannam <c.cannam@qmul.ac.uk>
date Fri, 18 May 2007 16:43:59 +0000
parents aa588f3b46a2
children
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    QM Vamp Plugin Set

    Centre for Digital Music, Queen Mary, University of London.
    All rights reserved.
*/

#include "BeatDetect.h"

#include <dsp/onsets/DetectionFunction.h>
#include <dsp/onsets/PeakPicking.h>
#include <dsp/tempotracking/TempoTrack.h>

using std::string;
using std::vector;
using std::cerr;
using std::endl;

float BeatDetector::m_stepSecs = 0.01161;

class BeatDetectorData
{
public:
    BeatDetectorData(const DFConfig &config) : dfConfig(config) {
	df = new DetectionFunction(config);
    }
    ~BeatDetectorData() {
	delete df;
    }
    void reset() {
	delete df;
	df = new DetectionFunction(dfConfig);
	dfOutput.clear();
    }

    DFConfig dfConfig;
    DetectionFunction *df;
    vector<double> dfOutput;
};
    

BeatDetector::BeatDetector(float inputSampleRate) :
    Vamp::Plugin(inputSampleRate),
    m_d(0),
    m_dfType(DF_COMPLEXSD),
    m_sensitivity(50)
{
}

BeatDetector::~BeatDetector()
{
    delete m_d;
}

string
BeatDetector::getIdentifier() const
{
    return "qm-tempotracker";
}

string
BeatDetector::getName() const
{
    return "Note Onset and Beat Tracker";
}

string
BeatDetector::getDescription() const
{
    return "Estimate tempo, metrical beat locations, and individual note onset positions";
}

string
BeatDetector::getMaker() const
{
    return "Christian Landone and Matthew Davies, Queen Mary, University of London";
}

int
BeatDetector::getPluginVersion() const
{
    return 2;
}

string
BeatDetector::getCopyright() const
{
    return "Copyright (c) 2006 - All Rights Reserved";
}

BeatDetector::ParameterList
BeatDetector::getParameterDescriptors() const
{
    ParameterList list;

    ParameterDescriptor desc;
    desc.identifier = "dftype";
    desc.name = "Onset Detection Function Type";
    desc.description = "Method used to calculate the onset detection function";
    desc.minValue = 0;
    desc.maxValue = 3;
    desc.defaultValue = 3;
    desc.isQuantized = true;
    desc.quantizeStep = 1;
    desc.valueNames.push_back("High-Frequency Content");
    desc.valueNames.push_back("Spectral Difference");
    desc.valueNames.push_back("Phase Deviation");
    desc.valueNames.push_back("Complex Domain");
    desc.valueNames.push_back("Broadband Energy Rise");
    list.push_back(desc);

    desc.identifier = "sensitivity";
    desc.name = "Onset Detector Sensitivity";
    desc.description = "Sensitivity of peak-picker for onset detection";
    desc.minValue = 0;
    desc.maxValue = 100;
    desc.defaultValue = 50;
    desc.isQuantized = true;
    desc.quantizeStep = 1;
    desc.unit = "%";
    desc.valueNames.clear();
    list.push_back(desc);

    return list;
}

float
BeatDetector::getParameter(std::string name) const
{
    if (name == "dftype") {
        switch (m_dfType) {
        case DF_HFC: return 0;
        case DF_SPECDIFF: return 1;
        case DF_PHASEDEV: return 2;
        default: case DF_COMPLEXSD: return 3;
        case DF_BROADBAND: return 4;
        }
    } else if (name == "sensitivity") {
        return m_sensitivity;
    }
    return 0.0;
}

void
BeatDetector::setParameter(std::string name, float value)
{
    if (name == "dftype") {
        switch (lrintf(value)) {
        case 0: m_dfType = DF_HFC; break;
        case 1: m_dfType = DF_SPECDIFF; break;
        case 2: m_dfType = DF_PHASEDEV; break;
        default: case 3: m_dfType = DF_COMPLEXSD; break;
        case 4: m_dfType = DF_BROADBAND; break;
        }
    } else if (name == "sensitivity") {
        m_sensitivity = value;
    }
}

bool
BeatDetector::initialise(size_t channels, size_t stepSize, size_t blockSize)
{
    if (m_d) {
	delete m_d;
	m_d = 0;
    }

    if (channels < getMinChannelCount() ||
	channels > getMaxChannelCount()) {
        std::cerr << "BeatDetector::initialise: Unsupported channel count: "
                  << channels << std::endl;
        return false;
    }

    if (blockSize != getPreferredStepSize() * 2) {
        std::cerr << "BeatDetector::initialise: Unsupported block size for this sample rate: "
                  << blockSize << " (wanted " << (getPreferredStepSize() * 2) << ")" << std::endl;
        return false;
    }

    if (stepSize != getPreferredStepSize()) {
        std::cerr << "BeatDetector::initialise: Unsupported step size for this sample rate: "
                  << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
        return false;
    }

    DFConfig dfConfig;
    dfConfig.DFType = m_dfType;
    dfConfig.stepSecs = float(stepSize) / m_inputSampleRate;
    dfConfig.stepSize = stepSize;
    dfConfig.frameLength = blockSize;
    dfConfig.dbRise = 6.0 - m_sensitivity / 20.0;
    
    m_d = new BeatDetectorData(dfConfig);
    return true;
}

void
BeatDetector::reset()
{
    if (m_d) m_d->reset();
}

size_t
BeatDetector::getPreferredStepSize() const
{
    size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
//    std::cerr << "BeatDetector::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
    return step;
}

size_t
BeatDetector::getPreferredBlockSize() const
{
    return getPreferredStepSize() * 2;
}

BeatDetector::OutputList
BeatDetector::getOutputDescriptors() const
{
    OutputList list;

    OutputDescriptor beat;
    beat.identifier = "beats";
    beat.name = "Beats";
    beat.unit = "";
    beat.hasFixedBinCount = true;
    beat.binCount = 0;
    beat.sampleType = OutputDescriptor::VariableSampleRate;
    beat.sampleRate = 1.0 / m_stepSecs;

    OutputDescriptor df;
    df.identifier = "detection_fn";
    df.name = "Onset Detection Function";
    df.unit = "";
    df.hasFixedBinCount = true;
    df.binCount = 1;
    df.hasKnownExtents = false;
    df.isQuantized = false;
    df.sampleType = OutputDescriptor::OneSamplePerStep;

    OutputDescriptor tempo;
    tempo.identifier = "tempo";
    tempo.name = "Tempo";
    tempo.unit = "bpm";
    tempo.hasFixedBinCount = true;
    tempo.binCount = 1;
    tempo.sampleType = OutputDescriptor::VariableSampleRate;
    tempo.sampleRate = 1.0 / m_stepSecs;

    OutputDescriptor onsets;
    onsets.identifier = "onsets";
    onsets.name = "Note Onsets";
    onsets.unit = "";
    onsets.hasFixedBinCount = true;
    onsets.binCount = 0;
    onsets.sampleType = OutputDescriptor::VariableSampleRate;
    onsets.sampleRate = 1.0 / m_stepSecs;

    OutputDescriptor sdf;
    sdf.identifier = "smoothed_df";
    sdf.name = "Smoothed Detection Function";
    sdf.unit = "";
    sdf.hasFixedBinCount = true;
    sdf.binCount = 1;
    sdf.hasKnownExtents = false;
    sdf.isQuantized = false;

    sdf.sampleType = OutputDescriptor::VariableSampleRate;

//!!! SV doesn't seem to handle these correctly in getRemainingFeatures
//    sdf.sampleType = OutputDescriptor::FixedSampleRate;
    sdf.sampleRate = 1.0 / m_stepSecs;

    list.push_back(beat);
    list.push_back(df);
    list.push_back(tempo);
    list.push_back(onsets);
    list.push_back(sdf);

    return list;
}

BeatDetector::FeatureSet
BeatDetector::process(const float *const *inputBuffers,
                      Vamp::RealTime /* timestamp */)
{
    if (!m_d) {
	cerr << "ERROR: BeatDetector::process: "
	     << "BeatDetector has not been initialised"
	     << endl;
	return FeatureSet();
    }

    size_t len = m_d->dfConfig.frameLength / 2;

    double *magnitudes = new double[len];
    double *phases = new double[len];

    // We only support a single input channel

    for (size_t i = 0; i < len; ++i) {

        magnitudes[i] = sqrt(inputBuffers[0][i*2  ] * inputBuffers[0][i*2  ] +
                             inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);

	phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]);
    }

    double output = m_d->df->process(magnitudes, phases);

    delete[] magnitudes;
    delete[] phases;

    m_d->dfOutput.push_back(output);

    FeatureSet returnFeatures;

    Feature feature;
    feature.hasTimestamp = false;
    feature.values.push_back(output);

    returnFeatures[1].push_back(feature); // detection function is output 1
    return returnFeatures;
}

BeatDetector::FeatureSet
BeatDetector::getRemainingFeatures()
{
    if (!m_d) {
	cerr << "ERROR: BeatDetector::getRemainingFeatures: "
	     << "BeatDetector has not been initialised"
	     << endl;
	return FeatureSet();
    }

    double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
    double bCoeffs[] = { 0.1600,  0.3200, 0.1600 };

    TTParams ttParams;
    ttParams.winLength = 512;
    ttParams.lagLength = 128;
    ttParams.LPOrd = 2;
    ttParams.LPACoeffs = aCoeffs;
    ttParams.LPBCoeffs = bCoeffs;
    ttParams.alpha = 9;
    ttParams.WinT.post = 8;
    ttParams.WinT.pre = 7;

    TempoTrack tempoTracker(ttParams);

    vector<double> tempos;
    vector<int> beats = tempoTracker.process(m_d->dfOutput, &tempos);

    FeatureSet returnFeatures;

    char label[100];

    for (size_t i = 0; i < beats.size(); ++i) {

	size_t frame = beats[i] * m_d->dfConfig.stepSize;

	Feature feature;
	feature.hasTimestamp = true;
	feature.timestamp = Vamp::RealTime::frame2RealTime
	    (frame, lrintf(m_inputSampleRate));

	float bpm = 0.0;
	int frameIncrement = 0;

	if (i < beats.size() - 1) {

	    frameIncrement = (beats[i+1] - beats[i]) * m_d->dfConfig.stepSize;

	    // one beat is frameIncrement frames, so there are
	    // samplerate/frameIncrement bps, so
	    // 60*samplerate/frameIncrement bpm

	    if (frameIncrement > 0) {
		bpm = (60.0 * m_inputSampleRate) / frameIncrement;
		bpm = int(bpm * 100.0 + 0.5) / 100.0;
                sprintf(label, "%.2f bpm", bpm);
                feature.label = label;
	    }
	}

	returnFeatures[0].push_back(feature); // beats are output 0
    }

    double prevTempo = 0.0;

    for (size_t i = 0; i < tempos.size(); ++i) {

        size_t frame = i * m_d->dfConfig.stepSize * ttParams.lagLength;

//        std::cerr << "unit " << i << ", step size " << m_d->dfConfig.stepSize << ", hop " << ttParams.lagLength << ", frame = " << frame << std::endl;
        
        if (tempos[i] > 1 && int(tempos[i] * 100) != int(prevTempo * 100)) {
            Feature feature;
            feature.hasTimestamp = true;
            feature.timestamp = Vamp::RealTime::frame2RealTime
                (frame, lrintf(m_inputSampleRate));
            feature.values.push_back(tempos[i]);
            sprintf(label, "%.2f bpm", tempos[i]);
            feature.label = label;
            returnFeatures[2].push_back(feature); // tempo is output 2
        }
    }

    // Now a separate pass for onsets and smoothed detection function

    PPickParams ppParams;
    ppParams.length = m_d->dfOutput.size();
    // tau and cutoff appear to be unused in PeakPicking, but I've
    // inserted some moderately plausible values rather than leave
    // them unset.  The QuadThresh values come from trial and error.
    // The rest of these are copied from ttParams: I don't claim to
    // know whether they're good or not --cc
    ppParams.tau = m_d->dfConfig.stepSize / m_inputSampleRate;
    ppParams.alpha = 9;
    ppParams.cutoff = m_inputSampleRate/4;
    ppParams.LPOrd = 2;
    ppParams.LPACoeffs = aCoeffs;
    ppParams.LPBCoeffs = bCoeffs;
    ppParams.WinT.post = 8;
    ppParams.WinT.pre = 7;
    ppParams.QuadThresh.a = (100 - m_sensitivity) / 1000.0;
    ppParams.QuadThresh.b = 0;
    ppParams.QuadThresh.c = (100 - m_sensitivity) / 1500.0;

    PeakPicking peakPicker(ppParams);

    double *ppSrc = new double[ppParams.length];
    for (int i = 0; i < ppParams.length; ++i) {
        ppSrc[i] = m_d->dfOutput[i];
    }

    vector<int> onsets;
    peakPicker.process(ppSrc, ppParams.length, onsets);

    for (size_t i = 0; i < onsets.size(); ++i) {

        size_t index = onsets[i];

        if (m_dfType != DF_BROADBAND) {
            double prevDiff = 0.0;
            while (index > 1) {
                double diff = ppSrc[index] - ppSrc[index-1];
                if (diff < prevDiff * 0.75) break;
                prevDiff = diff;
                --index;
            }
        }

	size_t frame = index * m_d->dfConfig.stepSize;

	Feature feature;
	feature.hasTimestamp = true;
	feature.timestamp = Vamp::RealTime::frame2RealTime
	    (frame, lrintf(m_inputSampleRate));

	returnFeatures[3].push_back(feature); // onsets are output 3
    }

    for (int i = 0; i < ppParams.length; ++i) {
        
        Feature feature;
//        feature.hasTimestamp = false;
        feature.hasTimestamp = true;
	size_t frame = i * m_d->dfConfig.stepSize;
	feature.timestamp = Vamp::RealTime::frame2RealTime
	    (frame, lrintf(m_inputSampleRate));

        feature.values.push_back(ppSrc[i]);
        returnFeatures[4].push_back(feature); // smoothed df is output 4
    }

    return returnFeatures;
}