c@92
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@92
|
2
|
c@92
|
3 /*
|
c@92
|
4 QM Vamp Plugin Set
|
c@92
|
5
|
c@92
|
6 Centre for Digital Music, Queen Mary, University of London.
|
c@135
|
7
|
c@135
|
8 This program is free software; you can redistribute it and/or
|
c@135
|
9 modify it under the terms of the GNU General Public License as
|
c@135
|
10 published by the Free Software Foundation; either version 2 of the
|
c@135
|
11 License, or (at your option) any later version. See the file
|
c@135
|
12 COPYING included with this distribution for more information.
|
c@92
|
13 */
|
c@92
|
14
|
c@92
|
15 #ifndef _ADAPTIVE_SPECTROGRAM_H_
|
c@92
|
16 #define _ADAPTIVE_SPECTROGRAM_H_
|
c@92
|
17
|
c@92
|
18 #include <vamp-sdk/Plugin.h>
|
c@92
|
19 #include <cmath>
|
c@92
|
20 #include <vector>
|
c@92
|
21
|
c@108
|
22 #include <dsp/transforms/FFT.h>
|
c@107
|
23 #include <base/Window.h>
|
c@105
|
24
|
c@104
|
25 #include "thread/Thread.h"
|
c@110
|
26 #include "thread/AsynchronousTask.h"
|
c@110
|
27 #include "thread/BlockAllocator.h"
|
c@104
|
28
|
c@92
|
29 class AdaptiveSpectrogram : public Vamp::Plugin
|
c@92
|
30 {
|
c@92
|
31 public:
|
c@92
|
32 AdaptiveSpectrogram(float inputSampleRate);
|
c@92
|
33 virtual ~AdaptiveSpectrogram();
|
c@92
|
34
|
c@92
|
35 bool initialise(size_t channels, size_t stepSize, size_t blockSize);
|
c@92
|
36 void reset();
|
c@92
|
37
|
c@92
|
38 InputDomain getInputDomain() const { return TimeDomain; }
|
c@92
|
39
|
c@92
|
40 std::string getIdentifier() const;
|
c@92
|
41 std::string getName() const;
|
c@92
|
42 std::string getDescription() const;
|
c@92
|
43 std::string getMaker() const;
|
c@92
|
44 int getPluginVersion() const;
|
c@92
|
45 std::string getCopyright() const;
|
c@92
|
46
|
c@92
|
47 size_t getPreferredStepSize() const;
|
c@92
|
48 size_t getPreferredBlockSize() const;
|
c@92
|
49
|
c@92
|
50 ParameterList getParameterDescriptors() const;
|
c@92
|
51 float getParameter(std::string id) const;
|
c@92
|
52 void setParameter(std::string id, float value);
|
c@92
|
53
|
c@92
|
54 OutputList getOutputDescriptors() const;
|
c@92
|
55
|
c@92
|
56 FeatureSet process(const float *const *inputBuffers,
|
c@92
|
57 Vamp::RealTime timestamp);
|
c@92
|
58
|
c@92
|
59 FeatureSet getRemainingFeatures();
|
c@92
|
60
|
c@92
|
61 protected:
|
c@92
|
62 int m_w;
|
c@92
|
63 int m_n;
|
c@114
|
64 bool m_coarse;
|
c@109
|
65 bool m_threaded;
|
c@92
|
66
|
c@100
|
67 struct Spectrogram
|
c@100
|
68 {
|
c@100
|
69 int resolution;
|
c@100
|
70 int width;
|
c@100
|
71 double **data;
|
c@100
|
72
|
c@100
|
73 Spectrogram(int r, int w) :
|
c@100
|
74 resolution(r), width(w) {
|
c@100
|
75 data = new double *[width];
|
c@100
|
76 for (int i = 0; i < width; ++i) data[i] = new double[resolution];
|
c@100
|
77 }
|
c@100
|
78
|
c@100
|
79 ~Spectrogram() {
|
c@100
|
80 for (int i = 0; i < width; ++i) delete[] data[i];
|
c@100
|
81 delete[] data;
|
c@100
|
82 }
|
c@100
|
83 };
|
c@100
|
84
|
c@100
|
85 struct Spectrograms
|
c@100
|
86 {
|
c@100
|
87 int minres;
|
c@100
|
88 int maxres;
|
c@100
|
89 int n;
|
c@100
|
90 Spectrogram **spectrograms;
|
c@100
|
91
|
c@100
|
92 Spectrograms(int mn, int mx, int widthofmax) :
|
c@100
|
93 minres(mn), maxres(mx) {
|
c@100
|
94 n = log2(maxres/minres) + 1;
|
c@100
|
95 spectrograms = new Spectrogram *[n];
|
c@100
|
96 int r = mn;
|
c@100
|
97 for (int i = 0; i < n; ++i) {
|
c@100
|
98 spectrograms[i] = new Spectrogram(r, widthofmax * (mx / r));
|
c@100
|
99 r = r * 2;
|
c@100
|
100 }
|
c@100
|
101 }
|
c@100
|
102 ~Spectrograms() {
|
c@100
|
103 for (int i = 0; i < n; ++i) {
|
c@100
|
104 delete spectrograms[i];
|
c@100
|
105 }
|
c@100
|
106 delete[] spectrograms;
|
c@100
|
107 }
|
c@100
|
108 };
|
c@100
|
109
|
c@100
|
110 struct Cutting
|
c@100
|
111 {
|
c@100
|
112 enum Cut { Horizontal, Vertical, Finished };
|
c@100
|
113 Cut cut;
|
c@100
|
114 Cutting *first;
|
c@100
|
115 Cutting *second;
|
c@100
|
116 double cost;
|
c@100
|
117 double value;
|
c@110
|
118 BlockAllocator *allocator;
|
c@100
|
119
|
c@100
|
120 ~Cutting() {
|
c@110
|
121 if (first) first->erase();
|
c@110
|
122 if (second) second->erase();
|
c@110
|
123 }
|
c@110
|
124
|
c@110
|
125 void erase() {
|
c@110
|
126 if (allocator) {
|
c@110
|
127 if (first) first->erase();
|
c@110
|
128 if (second) second->erase();
|
c@110
|
129 allocator->deallocate(this);
|
c@110
|
130 } else {
|
c@110
|
131 delete this;
|
c@110
|
132 }
|
c@100
|
133 }
|
c@100
|
134 };
|
c@100
|
135
|
c@105
|
136 class FFTThread : public AsynchronousTask
|
c@104
|
137 {
|
c@104
|
138 public:
|
c@107
|
139 FFTThread(int w) :
|
c@107
|
140 m_window(HanningWindow, w) {
|
c@106
|
141 m_w = w;
|
c@106
|
142 m_fft = new FFTReal(m_w);
|
c@106
|
143 m_rin = new double[m_w];
|
c@106
|
144 m_rout = new double[m_w];
|
c@106
|
145 m_iout = new double[m_w];
|
c@106
|
146 }
|
c@106
|
147 ~FFTThread() {
|
c@106
|
148 delete[] m_rin;
|
c@106
|
149 delete[] m_rout;
|
c@106
|
150 delete[] m_iout;
|
c@106
|
151 delete m_fft;
|
c@106
|
152 }
|
c@106
|
153
|
c@106
|
154 int getW() const { return m_w; }
|
c@105
|
155
|
c@109
|
156 void startCalculation(const float *timeDomain, Spectrograms &s,
|
c@109
|
157 int res, int maxwidth) {
|
c@109
|
158 setParameters(timeDomain, s, res, maxwidth);
|
c@105
|
159 startTask();
|
c@105
|
160 }
|
c@105
|
161
|
c@105
|
162 void await() {
|
c@105
|
163 awaitTask();
|
c@105
|
164 }
|
c@105
|
165
|
c@109
|
166 void setParameters(const float *timeDomain, Spectrograms &s,
|
c@109
|
167 int res, int maxwidth) {
|
c@109
|
168 m_in = timeDomain;
|
c@109
|
169 m_s = &s;
|
c@109
|
170 m_res = res;
|
c@109
|
171 m_maxwid = maxwidth;
|
c@109
|
172 }
|
c@109
|
173
|
c@105
|
174 void performTask() {
|
c@105
|
175 for (int i = 0; i < m_maxwid / m_w; ++i) {
|
c@105
|
176 int origin = m_maxwid/4 - m_w/4; // for 50% overlap
|
c@105
|
177 for (int j = 0; j < m_w; ++j) {
|
c@109
|
178 m_rin[j] = m_in[origin + i * m_w/2 + j];
|
c@105
|
179 }
|
c@107
|
180 m_window.cut(m_rin);
|
c@106
|
181 m_fft->process(false, m_rin, m_rout, m_iout);
|
c@105
|
182 for (int j = 0; j < m_w/2; ++j) {
|
c@105
|
183 int k = j+1; // include Nyquist but not DC
|
c@106
|
184 double mag = sqrt(m_rout[k] * m_rout[k] +
|
c@106
|
185 m_iout[k] * m_iout[k]);
|
c@105
|
186 double scaled = mag / (m_w/2);
|
c@105
|
187 m_s->spectrograms[m_res]->data[i][j] = scaled;
|
c@105
|
188 }
|
c@105
|
189 }
|
c@105
|
190 }
|
c@105
|
191
|
c@105
|
192 private:
|
c@107
|
193 Window<double> m_window;
|
c@106
|
194 FFTReal *m_fft;
|
c@105
|
195 const float *m_in;
|
c@106
|
196 double *m_rin;
|
c@106
|
197 double *m_rout;
|
c@106
|
198 double *m_iout;
|
c@105
|
199 Spectrograms *m_s;
|
c@105
|
200 int m_res;
|
c@105
|
201 int m_w;
|
c@105
|
202 int m_maxwid;
|
c@105
|
203 };
|
c@105
|
204
|
c@106
|
205 typedef std::map<int, FFTThread *> FFTMap;
|
c@106
|
206 FFTMap m_fftThreads;
|
c@105
|
207
|
c@105
|
208 class CutThread : public AsynchronousTask
|
c@105
|
209 {
|
c@105
|
210 public:
|
c@110
|
211 CutThread(const AdaptiveSpectrogram *as) : m_as(as), m_result(0) {
|
c@110
|
212 m_allocator = new BlockAllocator(sizeof(Cutting));
|
c@110
|
213 }
|
c@110
|
214 ~CutThread() {
|
c@110
|
215 delete m_allocator;
|
c@110
|
216 }
|
c@105
|
217
|
c@104
|
218 void cut(const Spectrograms &s, int res, int x, int y, int h) {
|
c@104
|
219 m_s = &s;
|
c@104
|
220 m_res = res;
|
c@104
|
221 m_x = x;
|
c@104
|
222 m_y = y;
|
c@104
|
223 m_h = h;
|
c@105
|
224 startTask();
|
c@104
|
225 }
|
c@104
|
226
|
c@104
|
227 Cutting *get() {
|
c@105
|
228 awaitTask();
|
c@105
|
229 return m_result;
|
c@104
|
230 }
|
c@104
|
231
|
c@104
|
232 protected:
|
c@105
|
233 void performTask() {
|
c@110
|
234 m_result = m_as->cut(*m_s, m_res, m_x, m_y, m_h, m_allocator);
|
c@104
|
235 }
|
c@104
|
236
|
c@105
|
237 private:
|
c@104
|
238 const AdaptiveSpectrogram *m_as;
|
c@110
|
239 BlockAllocator *m_allocator;
|
c@104
|
240 const Spectrograms *m_s;
|
c@104
|
241 int m_res;
|
c@104
|
242 int m_x;
|
c@104
|
243 int m_y;
|
c@104
|
244 int m_h;
|
c@104
|
245 Cutting *m_result;
|
c@104
|
246 };
|
c@105
|
247
|
c@109
|
248 mutable std::vector<CutThread *> m_cutThreads;
|
c@109
|
249 mutable bool m_threadsInUse;
|
c@104
|
250
|
c@110
|
251 inline double xlogx(double x) const {
|
c@104
|
252 if (x == 0.0) return 0.0;
|
c@104
|
253 else return x * log(x);
|
c@104
|
254 }
|
c@104
|
255
|
c@110
|
256 inline double cost(const Spectrogram &s, int x, int y) const {
|
c@100
|
257 return xlogx(s.data[x][y]);
|
c@100
|
258 }
|
c@100
|
259
|
c@110
|
260 inline double value(const Spectrogram &s, int x, int y) const {
|
c@100
|
261 return s.data[x][y];
|
c@100
|
262 }
|
c@100
|
263
|
c@114
|
264 inline double normalize(double vcost, double venergy) const {
|
c@114
|
265 return (vcost + (venergy * log(venergy))) / venergy;
|
c@114
|
266 }
|
c@114
|
267
|
c@114
|
268 inline bool isResolutionWanted(const Spectrograms &s, int res) const {
|
c@114
|
269 if (!m_coarse) return true;
|
c@114
|
270 if (res == s.minres || res == s.maxres) return true;
|
c@114
|
271 int n = 0;
|
c@114
|
272 for (int r = res; r > s.minres; r >>= 1) ++n;
|
c@114
|
273 return ((n & 0x1) == 0);
|
c@114
|
274 }
|
c@114
|
275
|
c@110
|
276 Cutting *cut(const Spectrograms &, int res, int x, int y, int h,
|
c@110
|
277 BlockAllocator *allocator) const;
|
c@100
|
278
|
c@104
|
279 void getSubCuts(const Spectrograms &, int res, int x, int y, int h,
|
c@114
|
280 Cutting **top, Cutting **bottom,
|
c@114
|
281 Cutting **left, Cutting **right,
|
c@113
|
282 BlockAllocator *allocator) const;
|
c@100
|
283
|
c@104
|
284 void printCutting(Cutting *, std::string) const;
|
c@104
|
285
|
c@104
|
286 void assemble(const Spectrograms &, const Cutting *,
|
c@104
|
287 std::vector<std::vector<float> > &,
|
c@104
|
288 int x, int y, int w, int h) const;
|
c@104
|
289 };
|
c@92
|
290
|
c@92
|
291
|
c@92
|
292 #endif
|