Chris@110: Chris@110: #include "dsp/transforms/FFT.h" Chris@110: Chris@110: #define BOOST_TEST_DYN_LINK Chris@110: #define BOOST_TEST_MAIN Chris@110: Chris@110: #include Chris@110: Chris@110: BOOST_AUTO_TEST_SUITE(TestFFT) Chris@110: Chris@110: #define COMPARE_CONST(a, n) \ Chris@110: for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ Chris@110: BOOST_CHECK_SMALL(a[cmp_i] - n, 1e-14); \ Chris@110: } Chris@110: Chris@110: #define COMPARE_ARRAY(a, b) \ Chris@110: for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ Chris@110: BOOST_CHECK_SMALL(a[cmp_i] - b[cmp_i], 1e-14); \ Chris@110: } Chris@110: Chris@114: //!!! need at least one test with complex time-domain signal Chris@110: Chris@110: BOOST_AUTO_TEST_CASE(forwardArrayBounds) Chris@110: { Chris@110: // initialise bins to something recognisable, so we can tell Chris@110: // if they haven't been written Chris@110: double in[] = { 1, 1, -1, -1 }; Chris@110: double re[] = { 999, 999, 999, 999, 999, 999 }; Chris@110: double im[] = { 999, 999, 999, 999, 999, 999 }; Chris@110: FFT(4).process(false, in, 0, re+1, im+1); Chris@110: // And check we haven't overrun the arrays Chris@110: BOOST_CHECK_EQUAL(re[0], 999.0); Chris@110: BOOST_CHECK_EQUAL(im[0], 999.0); Chris@110: BOOST_CHECK_EQUAL(re[5], 999.0); Chris@110: BOOST_CHECK_EQUAL(im[5], 999.0); Chris@110: } Chris@110: Chris@114: BOOST_AUTO_TEST_CASE(r_forwardArrayBounds) Chris@114: { Chris@114: // initialise bins to something recognisable, so we can tell Chris@114: // if they haven't been written Chris@114: double in[] = { 1, 1, -1, -1 }; Chris@114: double re[] = { 999, 999, 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re+1, im+1); Chris@114: // And check we haven't overrun the arrays Chris@114: BOOST_CHECK_EQUAL(re[0], 999.0); Chris@114: BOOST_CHECK_EQUAL(im[0], 999.0); Chris@114: BOOST_CHECK_EQUAL(re[5], 999.0); Chris@114: BOOST_CHECK_EQUAL(im[5], 999.0); Chris@114: } Chris@114: Chris@110: BOOST_AUTO_TEST_CASE(inverseArrayBounds) Chris@110: { Chris@110: // initialise bins to something recognisable, so we can tell Chris@110: // if they haven't been written Chris@114: double re[] = { 0, 1, 0, 1 }; Chris@114: double im[] = { 0, -2, 0, 2 }; Chris@110: double outre[] = { 999, 999, 999, 999, 999, 999 }; Chris@110: double outim[] = { 999, 999, 999, 999, 999, 999 }; Chris@114: FFT(4).process(true, re, im, outre+1, outim+1); Chris@110: // And check we haven't overrun the arrays Chris@110: BOOST_CHECK_EQUAL(outre[0], 999.0); Chris@110: BOOST_CHECK_EQUAL(outim[0], 999.0); Chris@110: BOOST_CHECK_EQUAL(outre[5], 999.0); Chris@110: BOOST_CHECK_EQUAL(outim[5], 999.0); Chris@110: } Chris@110: Chris@114: BOOST_AUTO_TEST_CASE(r_inverseArrayBounds) Chris@114: { Chris@114: // initialise bins to something recognisable, so we can tell Chris@114: // if they haven't been written Chris@114: double re[] = { 0, 1, 0 }; Chris@114: double im[] = { 0, -2, 0 }; Chris@114: double outre[] = { 999, 999, 999, 999, 999, 999 }; Chris@114: FFTReal(4).inverse(re, im, outre+1); Chris@114: // And check we haven't overrun the arrays Chris@114: BOOST_CHECK_EQUAL(outre[0], 999.0); Chris@114: BOOST_CHECK_EQUAL(outre[5], 999.0); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(dc) Chris@114: { Chris@114: // DC-only signal. The DC bin is purely real Chris@114: double in[] = { 1, 1, 1, 1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFT(4).process(false, in, 0, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 4.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 0.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: double backim[4]; Chris@114: FFT(4).process(true, re, im, back, backim); Chris@114: COMPARE_ARRAY(back, in); Chris@114: COMPARE_CONST(backim, 0.0); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(r_dc) Chris@114: { Chris@114: // DC-only signal. The DC bin is purely real Chris@114: double in[] = { 1, 1, 1, 1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 4.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 0.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: // check conjugates are reconstructed Chris@114: re[3] = 999; Chris@114: im[3] = 999; Chris@114: FFTReal(4).inverse(re, im, back); Chris@114: COMPARE_ARRAY(back, in); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(sine) Chris@114: { Chris@114: // Sine. Output is purely imaginary Chris@114: double in[] = { 0, 1, 0, -1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFT(4).process(false, in, 0, re, im); Chris@114: COMPARE_CONST(re, 0.0); Chris@114: BOOST_CHECK_EQUAL(im[0], 0.0); Chris@114: BOOST_CHECK_EQUAL(im[1], -2.0); Chris@114: BOOST_CHECK_EQUAL(im[2], 0.0); Chris@114: BOOST_CHECK_EQUAL(im[3], 2.0); Chris@114: double back[4]; Chris@114: double backim[4]; Chris@114: FFT(4).process(true, re, im, back, backim); Chris@114: COMPARE_ARRAY(back, in); Chris@114: COMPARE_CONST(backim, 0.0); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(r_sine) Chris@114: { Chris@114: // Sine. Output is purely imaginary Chris@114: double in[] = { 0, 1, 0, -1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re, im); Chris@114: COMPARE_CONST(re, 0.0); Chris@114: BOOST_CHECK_EQUAL(im[0], 0.0); Chris@114: BOOST_CHECK_EQUAL(im[1], -2.0); Chris@114: BOOST_CHECK_EQUAL(im[2], 0.0); Chris@114: BOOST_CHECK_EQUAL(im[3], 2.0); Chris@114: double back[4]; Chris@114: // check conjugates are reconstructed Chris@114: re[3] = 999; Chris@114: im[3] = 999; Chris@114: FFTReal(4).inverse(re, im, back); Chris@114: COMPARE_ARRAY(back, in); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(cosine) Chris@114: { Chris@114: // Cosine. Output is purely real Chris@114: double in[] = { 1, 0, -1, 0 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFT(4).process(false, in, 0, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 2.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 2.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: double backim[4]; Chris@114: FFT(4).process(true, re, im, back, backim); Chris@114: COMPARE_ARRAY(back, in); Chris@114: COMPARE_CONST(backim, 0.0); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(r_cosine) Chris@114: { Chris@114: // Cosine. Output is purely real Chris@114: double in[] = { 1, 0, -1, 0 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 2.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 2.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: // check conjugates are reconstructed Chris@114: re[3] = 999; Chris@114: im[3] = 999; Chris@114: FFTReal(4).inverse(re, im, back); Chris@114: COMPARE_ARRAY(back, in); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(sineCosine) Chris@114: { Chris@114: // Sine and cosine mixed Chris@114: double in[] = { 0.5, 1, -0.5, -1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFT(4).process(false, in, 0, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@114: BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); Chris@114: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@114: BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); Chris@114: BOOST_CHECK_EQUAL(im[0], 0.0); Chris@114: BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); Chris@114: BOOST_CHECK_EQUAL(im[2], 0.0); Chris@114: BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); Chris@114: double back[4]; Chris@114: double backim[4]; Chris@114: FFT(4).process(true, re, im, back, backim); Chris@114: COMPARE_ARRAY(back, in); Chris@114: COMPARE_CONST(backim, 0.0); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(r_sineCosine) Chris@114: { Chris@114: // Sine and cosine mixed Chris@114: double in[] = { 0.5, 1, -0.5, -1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@114: BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); Chris@114: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@114: BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); Chris@114: BOOST_CHECK_EQUAL(im[0], 0.0); Chris@114: BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); Chris@114: BOOST_CHECK_EQUAL(im[2], 0.0); Chris@114: BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); Chris@114: double back[4]; Chris@114: // check conjugates are reconstructed Chris@114: re[3] = 999; Chris@114: im[3] = 999; Chris@114: FFTReal(4).inverse(re, im, back); Chris@114: COMPARE_ARRAY(back, in); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(nyquist) Chris@114: { Chris@114: double in[] = { 1, -1, 1, -1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFT(4).process(false, in, 0, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 4.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 0.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: double backim[4]; Chris@114: FFT(4).process(true, re, im, back, backim); Chris@114: COMPARE_ARRAY(back, in); Chris@114: COMPARE_CONST(backim, 0.0); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(r_nyquist) Chris@114: { Chris@114: double in[] = { 1, -1, 1, -1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 4.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 0.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: // check conjugates are reconstructed Chris@114: re[3] = 999; Chris@114: im[3] = 999; Chris@114: FFTReal(4).inverse(re, im, back); Chris@114: COMPARE_ARRAY(back, in); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(dirac) Chris@114: { Chris@114: double in[] = { 1, 0, 0, 0 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFT(4).process(false, in, 0, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 1.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 1.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 1.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 1.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: double backim[4]; Chris@114: FFT(4).process(true, re, im, back, backim); Chris@114: COMPARE_ARRAY(back, in); Chris@114: COMPARE_CONST(backim, 0.0); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(r_dirac) Chris@114: { Chris@114: double in[] = { 1, 0, 0, 0 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 1.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 1.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 1.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 1.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: // check conjugates are reconstructed Chris@114: re[3] = 999; Chris@114: im[3] = 999; Chris@114: FFTReal(4).inverse(re, im, back); Chris@114: COMPARE_ARRAY(back, in); Chris@114: } Chris@114: Chris@110: BOOST_AUTO_TEST_SUITE_END() Chris@110: