cannam@39: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ cannam@39: cannam@39: /* cannam@39: QM DSP Library cannam@39: cannam@39: Centre for Digital Music, Queen Mary, University of London. Chris@84: This file copyright 2005-2006 Christian Landone.and Matthew Davies. Chris@84: Chris@84: This program is free software; you can redistribute it and/or Chris@84: modify it under the terms of the GNU General Public License as Chris@84: published by the Free Software Foundation; either version 2 of the Chris@84: License, or (at your option) any later version. See the file Chris@84: COPYING included with this distribution for more information. cannam@39: */ cannam@39: cannam@39: #include "TempoTrack.h" cannam@39: cannam@39: #include "maths/MathAliases.h" cannam@39: #include "maths/MathUtilities.h" cannam@39: cannam@39: #include cannam@39: cannam@46: #include cannam@46: cannam@47: //#define DEBUG_TEMPO_TRACK 1 cannam@47: cannam@39: cannam@39: #define RAY43VAL cannam@39: cannam@39: ////////////////////////////////////////////////////////////////////// cannam@39: // Construction/Destruction cannam@39: ////////////////////////////////////////////////////////////////////// cannam@39: cannam@39: TempoTrack::TempoTrack( TTParams Params ) cannam@39: { cannam@39: m_tempoScratch = NULL; cannam@39: m_rawDFFrame = NULL; cannam@39: m_smoothDFFrame = NULL; cannam@39: m_frameACF = NULL; cannam@39: m_smoothRCF = NULL; cannam@39: cannam@39: m_dataLength = 0; cannam@39: m_winLength = 0; cannam@39: m_lagLength = 0; cannam@39: cannam@39: m_rayparam = 0; cannam@39: m_sigma = 0; cannam@39: m_DFWVNnorm = 0; cannam@39: cannam@39: initialise( Params ); cannam@39: } cannam@39: cannam@39: TempoTrack::~TempoTrack() cannam@39: { cannam@39: deInitialise(); cannam@39: } cannam@39: cannam@39: void TempoTrack::initialise( TTParams Params ) cannam@39: { cannam@39: m_winLength = Params.winLength; cannam@39: m_lagLength = Params.lagLength; cannam@39: cannam@39: m_rayparam = 43.0; cannam@39: m_sigma = sqrt(3.9017); cannam@39: m_DFWVNnorm = exp( ( log( 2.0 ) / m_rayparam ) * ( m_winLength + 2 ) ); cannam@39: cannam@39: m_rawDFFrame = new double[ m_winLength ]; cannam@39: m_smoothDFFrame = new double[ m_winLength ]; cannam@39: m_frameACF = new double[ m_winLength ]; cannam@39: m_tempoScratch = new double[ m_lagLength ]; cannam@39: m_smoothRCF = new double[ m_lagLength ]; cannam@39: cannam@39: cannam@39: unsigned int winPre = Params.WinT.pre; cannam@39: unsigned int winPost = Params.WinT.post; cannam@39: cannam@39: m_DFFramer.configure( m_winLength, m_lagLength ); cannam@39: cannam@39: m_DFPParams.length = m_winLength; cannam@39: m_DFPParams.AlphaNormParam = Params.alpha; cannam@39: m_DFPParams.LPOrd = Params.LPOrd; cannam@39: m_DFPParams.LPACoeffs = Params.LPACoeffs; cannam@39: m_DFPParams.LPBCoeffs = Params.LPBCoeffs; cannam@39: m_DFPParams.winPre = Params.WinT.pre; cannam@39: m_DFPParams.winPost = Params.WinT.post; cannam@39: m_DFPParams.isMedianPositive = true; cannam@39: cannam@39: m_DFConditioning = new DFProcess( m_DFPParams ); cannam@39: cannam@39: cannam@39: // these are parameters for smoothing m_tempoScratch cannam@39: m_RCFPParams.length = m_lagLength; cannam@39: m_RCFPParams.AlphaNormParam = Params.alpha; cannam@39: m_RCFPParams.LPOrd = Params.LPOrd; cannam@39: m_RCFPParams.LPACoeffs = Params.LPACoeffs; cannam@39: m_RCFPParams.LPBCoeffs = Params.LPBCoeffs; cannam@39: m_RCFPParams.winPre = Params.WinT.pre; cannam@39: m_RCFPParams.winPost = Params.WinT.post; cannam@39: m_RCFPParams.isMedianPositive = true; cannam@39: cannam@39: m_RCFConditioning = new DFProcess( m_RCFPParams ); cannam@39: cannam@39: } cannam@39: cannam@39: void TempoTrack::deInitialise() cannam@39: { cannam@39: delete [] m_rawDFFrame; cannam@39: cannam@39: delete [] m_smoothDFFrame; cannam@39: cannam@39: delete [] m_smoothRCF; cannam@39: cannam@39: delete [] m_frameACF; cannam@39: cannam@39: delete [] m_tempoScratch; cannam@39: cannam@39: delete m_DFConditioning; cannam@39: cannam@39: delete m_RCFConditioning; cannam@39: cannam@39: } cannam@39: cannam@39: void TempoTrack::createCombFilter(double* Filter, unsigned int winLength, unsigned int TSig, double beatLag) cannam@39: { cannam@39: unsigned int i; cannam@39: cannam@39: if( beatLag == 0 ) cannam@39: { cannam@39: for( i = 0; i < winLength; i++ ) cannam@39: { cannam@39: Filter[ i ] = ( ( i + 1 ) / pow( m_rayparam, 2.0) ) * exp( ( -pow(( i + 1 ),2.0 ) / ( 2.0 * pow( m_rayparam, 2.0)))); cannam@39: } cannam@39: } cannam@39: else cannam@39: { cannam@39: m_sigma = beatLag/4; cannam@39: for( i = 0; i < winLength; i++ ) cannam@39: { cannam@39: double dlag = (double)(i+1) - beatLag; cannam@39: Filter[ i ] = exp(-0.5 * pow(( dlag / m_sigma), 2.0) ) / (sqrt( 2 * PI) * m_sigma); cannam@39: } cannam@39: } cannam@39: } cannam@39: cannam@39: double TempoTrack::tempoMM(double* ACF, double* weight, int tsig) cannam@39: { cannam@39: cannam@39: double period = 0; cannam@39: double maxValRCF = 0.0; cannam@39: unsigned int maxIndexRCF = 0; cannam@39: cannam@39: double* pdPeaks; cannam@39: cannam@39: unsigned int maxIndexTemp; cannam@39: double maxValTemp; cannam@39: unsigned int count; cannam@39: cannam@39: unsigned int numelem,i,j; cannam@39: int a, b; cannam@39: cannam@39: for( i = 0; i < m_lagLength; i++ ) cannam@39: m_tempoScratch[ i ] = 0.0; cannam@39: cannam@39: if( tsig == 0 ) cannam@39: { cannam@39: //if time sig is unknown, use metrically unbiased version of Filterbank cannam@39: numelem = 4; cannam@39: } cannam@39: else cannam@39: { cannam@39: numelem = tsig; cannam@39: } cannam@39: cannam@47: #ifdef DEBUG_TEMPO_TRACK cannam@46: std::cerr << "tempoMM: m_winLength = " << m_winLength << ", m_lagLength = " << m_lagLength << ", numelem = " << numelem << std::endl; cannam@47: #endif cannam@46: cannam@39: for(i=1;iprocess( m_tempoScratch, m_smoothRCF); cannam@39: cannam@39: if (tsig != 0) // i.e. in context dependent state cannam@39: { cannam@39: // NOW FIND MAX INDEX OF ACFOUT cannam@46: for( i = 0; i < m_lagLength; i++) cannam@46: { cannam@46: if( m_tempoScratch[ i ] > maxValRCF) cannam@46: { cannam@46: maxValRCF = m_tempoScratch[ i ]; cannam@46: maxIndexRCF = i; cannam@46: } cannam@46: } cannam@39: } cannam@39: else // using rayleigh weighting cannam@39: { cannam@39: vector > rcfMat; cannam@39: cannam@39: double sumRcf = 0.; cannam@39: cannam@39: double maxVal = 0.; cannam@39: // now find the two values which minimise rcfMat cannam@39: double minVal = 0.; cannam@39: int p_i = 1; // periodicity for row i; cannam@39: int p_j = 1; //periodicity for column j; cannam@39: cannam@39: cannam@39: for ( i=0; i() ); // adds a new row... cannam@39: } cannam@39: cannam@39: for (i=0; i(i)/static_cast(j) ) / log(2.0); cannam@39: rcfMat[i][j] = ( abs(1.0-abs(log2PeriodRatio)) ); cannam@39: rcfMat[i][j] += ( 0.01*( 1./(m_tempoScratch[i]+m_tempoScratch[j]) ) ); cannam@39: } cannam@39: } cannam@39: cannam@39: // set diagonal equal to maximum value in rcfMat cannam@39: // we don't want to pick one strong middle peak - we need a combination of two peaks. cannam@39: cannam@39: for ( i=1; i maxVal) cannam@39: { cannam@39: maxVal = rcfMat[i][j]; cannam@39: } cannam@39: } cannam@39: } cannam@39: cannam@39: for ( i=1; i m_tempoScratch[p_j]) cannam@39: { cannam@39: beatPeriod = p_i; cannam@39: } cannam@39: cannam@39: // now write the output cannam@39: maxIndexRCF = static_cast(beatPeriod); cannam@39: } cannam@39: cannam@39: cannam@39: double locked = 5168.f / maxIndexRCF; cannam@39: if (locked >= 30 && locked <= 180) { cannam@39: m_lockedTempo = locked; cannam@39: } cannam@39: cannam@47: #ifdef DEBUG_TEMPO_TRACK cannam@47: std::cerr << "tempoMM: locked tempo = " << m_lockedTempo << std::endl; cannam@47: #endif cannam@47: cannam@39: if( tsig == 0 ) cannam@39: tsig = 4; cannam@39: cannam@46: cannam@47: #ifdef DEBUG_TEMPO_TRACK cannam@46: std::cerr << "tempoMM: maxIndexRCF = " << maxIndexRCF << std::endl; cannam@47: #endif cannam@39: cannam@39: if( tsig == 4 ) cannam@39: { cannam@47: #ifdef DEBUG_TEMPO_TRACK cannam@47: std::cerr << "tsig == 4" << std::endl; cannam@47: #endif cannam@47: cannam@39: pdPeaks = new double[ 4 ]; cannam@39: for( i = 0; i < 4; i++ ){ pdPeaks[ i ] = 0.0;} cannam@39: cannam@39: pdPeaks[ 0 ] = ( double )maxIndexRCF + 1; cannam@39: cannam@39: maxIndexTemp = 0; cannam@39: maxValTemp = 0.0; cannam@39: count = 0; cannam@39: cannam@39: for( i = (2 * maxIndexRCF + 1) - 1; i < (2 * maxIndexRCF + 1) + 2; i++ ) cannam@39: { cannam@39: if( ACF[ i ] > maxValTemp ) cannam@39: { cannam@39: maxValTemp = ACF[ i ]; cannam@39: maxIndexTemp = count; cannam@39: } cannam@39: count++; cannam@39: } cannam@39: pdPeaks[ 1 ] = (double)( maxIndexTemp + 1 + ( (2 * maxIndexRCF + 1 ) - 2 ) + 1 )/2; cannam@39: cannam@39: maxIndexTemp = 0; cannam@39: maxValTemp = 0.0; cannam@39: count = 0; cannam@39: cannam@39: for( i = (3 * maxIndexRCF + 2 ) - 2; i < (3 * maxIndexRCF + 2 ) + 3; i++ ) cannam@39: { cannam@39: if( ACF[ i ] > maxValTemp ) cannam@39: { cannam@39: maxValTemp = ACF[ i ]; cannam@39: maxIndexTemp = count; cannam@39: } cannam@39: count++; cannam@39: } cannam@39: pdPeaks[ 2 ] = (double)( maxIndexTemp + 1 + ( (3 * maxIndexRCF + 2) - 4 ) + 1 )/3; cannam@39: cannam@39: maxIndexTemp = 0; cannam@39: maxValTemp = 0.0; cannam@39: count = 0; cannam@39: cannam@39: for( i = ( 4 * maxIndexRCF + 3) - 3; i < ( 4 * maxIndexRCF + 3) + 4; i++ ) cannam@39: { cannam@39: if( ACF[ i ] > maxValTemp ) cannam@39: { cannam@39: maxValTemp = ACF[ i ]; cannam@39: maxIndexTemp = count; cannam@39: } cannam@39: count++; cannam@39: } cannam@39: pdPeaks[ 3 ] = (double)( maxIndexTemp + 1 + ( (4 * maxIndexRCF + 3) - 9 ) + 1 )/4 ; cannam@39: cannam@39: cannam@39: period = MathUtilities::mean( pdPeaks, 4 ); cannam@39: } cannam@39: else cannam@47: { cannam@47: #ifdef DEBUG_TEMPO_TRACK cannam@47: std::cerr << "tsig != 4" << std::endl; cannam@47: #endif cannam@47: cannam@39: pdPeaks = new double[ 3 ]; cannam@39: for( i = 0; i < 3; i++ ){ pdPeaks[ i ] = 0.0;} cannam@39: cannam@39: pdPeaks[ 0 ] = ( double )maxIndexRCF + 1; cannam@39: cannam@39: maxIndexTemp = 0; cannam@39: maxValTemp = 0.0; cannam@39: count = 0; cannam@39: cannam@39: for( i = (2 * maxIndexRCF + 1) - 1; i < (2 * maxIndexRCF + 1) + 2; i++ ) cannam@39: { cannam@39: if( ACF[ i ] > maxValTemp ) cannam@39: { cannam@39: maxValTemp = ACF[ i ]; cannam@39: maxIndexTemp = count; cannam@39: } cannam@39: count++; cannam@39: } cannam@39: pdPeaks[ 1 ] = (double)( maxIndexTemp + 1 + ( (2 * maxIndexRCF + 1 ) - 2 ) + 1 )/2; cannam@39: cannam@39: maxIndexTemp = 0; cannam@39: maxValTemp = 0.0; cannam@39: count = 0; cannam@39: cannam@39: for( i = (3 * maxIndexRCF + 2 ) - 2; i < (3 * maxIndexRCF + 2 ) + 3; i++ ) cannam@39: { cannam@39: if( ACF[ i ] > maxValTemp ) cannam@39: { cannam@39: maxValTemp = ACF[ i ]; cannam@39: maxIndexTemp = count; cannam@39: } cannam@39: count++; cannam@39: } cannam@39: pdPeaks[ 2 ] = (double)( maxIndexTemp + 1 + ( (3 * maxIndexRCF + 2) - 4 ) + 1 )/3; cannam@39: cannam@39: cannam@39: period = MathUtilities::mean( pdPeaks, 3 ); cannam@39: } cannam@39: cannam@39: delete [] pdPeaks; cannam@39: cannam@39: return period; cannam@39: } cannam@39: cannam@39: void TempoTrack::stepDetect( double* periodP, double* periodG, int currentIdx, int* flag ) cannam@39: { cannam@39: double stepthresh = 1 * 3.9017; cannam@39: cannam@39: if( *flag ) cannam@39: { cannam@39: if(abs(periodG[ currentIdx ] - periodP[ currentIdx ]) > stepthresh) cannam@39: { cannam@39: // do nuffin' cannam@39: } cannam@39: } cannam@39: else cannam@39: { cannam@39: if(fabs(periodG[ currentIdx ]-periodP[ currentIdx ]) > stepthresh) cannam@39: { cannam@39: *flag = 3; cannam@39: } cannam@39: } cannam@39: } cannam@39: cannam@39: void TempoTrack::constDetect( double* periodP, int currentIdx, int* flag ) cannam@39: { cannam@39: double constthresh = 2 * 3.9017; cannam@39: cannam@39: if( fabs( 2 * periodP[ currentIdx ] - periodP[ currentIdx - 1] - periodP[ currentIdx - 2] ) < constthresh) cannam@39: { cannam@39: *flag = 1; cannam@39: } cannam@39: else cannam@39: { cannam@39: *flag = 0; cannam@39: } cannam@39: } cannam@39: cannam@39: int TempoTrack::findMeter(double *ACF, unsigned int len, double period) cannam@39: { cannam@39: int i; cannam@39: int p = (int)MathUtilities::round( period ); cannam@39: int tsig; cannam@39: cannam@39: double Energy_3 = 0.0; cannam@39: double Energy_4 = 0.0; cannam@39: cannam@39: double temp3A = 0.0; cannam@39: double temp3B = 0.0; cannam@39: double temp4A = 0.0; cannam@39: double temp4B = 0.0; cannam@39: cannam@39: double* dbf = new double[ len ]; int t = 0; cannam@39: for( unsigned int u = 0; u < len; u++ ){ dbf[ u ] = 0.0; } cannam@39: cannam@39: if( (double)len < 6 * p + 2 ) cannam@39: { cannam@39: for( i = ( 3 * p - 2 ); i < ( 3 * p + 2 ) + 1; i++ ) cannam@39: { cannam@39: temp3A += ACF[ i ]; cannam@39: dbf[ t++ ] = ACF[ i ]; cannam@39: } cannam@39: cannam@39: for( i = ( 4 * p - 2 ); i < ( 4 * p + 2 ) + 1; i++ ) cannam@39: { cannam@39: temp4A += ACF[ i ]; cannam@39: } cannam@39: cannam@39: Energy_3 = temp3A; cannam@39: Energy_4 = temp4A; cannam@39: } cannam@39: else cannam@39: { cannam@39: for( i = ( 3 * p - 2 ); i < ( 3 * p + 2 ) + 1; i++ ) cannam@39: { cannam@39: temp3A += ACF[ i ]; cannam@39: } cannam@39: cannam@39: for( i = ( 4 * p - 2 ); i < ( 4 * p + 2 ) + 1; i++ ) cannam@39: { cannam@39: temp4A += ACF[ i ]; cannam@39: } cannam@39: cannam@39: for( i = ( 6 * p - 2 ); i < ( 6 * p + 2 ) + 1; i++ ) cannam@39: { cannam@39: temp3B += ACF[ i ]; cannam@39: } cannam@39: cannam@39: for( i = ( 2 * p - 2 ); i < ( 2 * p + 2 ) + 1; i++ ) cannam@39: { cannam@39: temp4B += ACF[ i ]; cannam@39: } cannam@39: cannam@39: Energy_3 = temp3A + temp3B; cannam@39: Energy_4 = temp4A + temp4B; cannam@39: } cannam@39: cannam@39: if (Energy_3 > Energy_4) cannam@39: { cannam@39: tsig = 3; cannam@39: } cannam@39: else cannam@39: { cannam@39: tsig = 4; cannam@39: } cannam@39: cannam@39: cannam@39: return tsig; cannam@39: } cannam@39: cannam@39: void TempoTrack::createPhaseExtractor(double *Filter, unsigned int winLength, double period, unsigned int fsp, unsigned int lastBeat) cannam@39: { cannam@39: int p = (int)MathUtilities::round( period ); cannam@39: int predictedOffset = 0; cannam@39: cannam@47: #ifdef DEBUG_TEMPO_TRACK cannam@46: std::cerr << "TempoTrack::createPhaseExtractor: period = " << period << ", p = " << p << std::endl; cannam@47: #endif cannam@46: cannam@47: if (p > 10000) { cannam@47: std::cerr << "TempoTrack::createPhaseExtractor: WARNING! Highly implausible period value " << p << "!" << std::endl; cannam@47: period = 5168 / 120; cannam@47: } cannam@46: cannam@47: double* phaseScratch = new double[ p*2 + 2 ]; cannam@47: for (int i = 0; i < p*2 + 2; ++i) phaseScratch[i] = 0.0; cannam@39: cannam@39: cannam@39: if( lastBeat != 0 ) cannam@39: { cannam@39: lastBeat = (int)MathUtilities::round((double)lastBeat );///(double)winLength); cannam@39: cannam@47: predictedOffset = lastBeat + p - fsp; cannam@39: cannam@47: if (predictedOffset < 0) cannam@47: { cannam@47: lastBeat = 0; cannam@47: } cannam@39: } cannam@39: cannam@39: if( lastBeat != 0 ) cannam@39: { cannam@39: int mu = p; cannam@39: double sigma = (double)p/8; cannam@39: double PhaseMin = 0.0; cannam@39: double PhaseMax = 0.0; cannam@39: unsigned int scratchLength = p*2; cannam@39: double temp = 0.0; cannam@39: cannam@39: for( int i = 0; i < scratchLength; i++ ) cannam@39: { cannam@39: phaseScratch[ i ] = exp( -0.5 * pow( ( i - mu ) / sigma, 2 ) ) / ( sqrt( 2*PI ) *sigma ); cannam@39: } cannam@39: cannam@39: MathUtilities::getFrameMinMax( phaseScratch, scratchLength, &PhaseMin, &PhaseMax ); cannam@39: cannam@39: for(int i = 0; i < scratchLength; i ++) cannam@39: { cannam@39: temp = phaseScratch[ i ]; cannam@39: phaseScratch[ i ] = (temp - PhaseMin)/PhaseMax; cannam@39: } cannam@39: cannam@47: #ifdef DEBUG_TEMPO_TRACK cannam@46: std::cerr << "predictedOffset = " << predictedOffset << std::endl; cannam@47: #endif cannam@46: cannam@39: unsigned int index = 0; cannam@47: for (int i = p - ( predictedOffset - 1); i < p + ( p - predictedOffset) + 1; i++) cannam@39: { cannam@47: #ifdef DEBUG_TEMPO_TRACK cannam@47: std::cerr << "assigning to filter index " << index << " (size = " << p*2 << ")" << " value " << phaseScratch[i] << " from scratch index " << i << std::endl; cannam@47: #endif cannam@39: Filter[ index++ ] = phaseScratch[ i ]; cannam@39: } cannam@39: } cannam@39: else cannam@39: { cannam@39: for( int i = 0; i < p; i ++) cannam@39: { cannam@39: Filter[ i ] = 1; cannam@39: } cannam@39: } cannam@39: cannam@39: delete [] phaseScratch; cannam@39: } cannam@39: cannam@39: int TempoTrack::phaseMM(double *DF, double *weighting, unsigned int winLength, double period) cannam@39: { cannam@39: int alignment = 0; cannam@39: int p = (int)MathUtilities::round( period ); cannam@39: cannam@39: double temp = 0.0; cannam@39: cannam@39: double* y = new double[ winLength ]; cannam@39: double* align = new double[ p ]; cannam@39: cannam@39: for( int i = 0; i < winLength; i++ ) cannam@39: { cannam@39: y[ i ] = (double)( -i + winLength )/(double)winLength; cannam@39: y[ i ] = pow(y [i ],2.0); // raise to power 2. cannam@39: } cannam@39: cannam@39: for( int o = 0; o < p; o++ ) cannam@39: { cannam@39: temp = 0.0; cannam@39: for(int i = 1 + (o - 1); i< winLength; i += (p + 1)) cannam@39: { cannam@39: temp = temp + DF[ i ] * y[ i ]; cannam@39: } cannam@39: align[ o ] = temp * weighting[ o ]; cannam@39: } cannam@39: cannam@39: cannam@39: double valTemp = 0.0; cannam@39: for(int i = 0; i < p; i++) cannam@39: { cannam@39: if( align[ i ] > valTemp ) cannam@39: { cannam@39: valTemp = align[ i ]; cannam@39: alignment = i; cannam@39: } cannam@39: } cannam@39: cannam@39: delete [] y; cannam@39: delete [] align; cannam@39: cannam@39: return alignment; cannam@39: } cannam@39: cannam@39: int TempoTrack::beatPredict(unsigned int FSP0, double alignment, double period, unsigned int step ) cannam@39: { cannam@39: int beat = 0; cannam@39: cannam@39: int p = (int)MathUtilities::round( period ); cannam@39: int align = (int)MathUtilities::round( alignment ); cannam@39: int FSP = (int)MathUtilities::round( FSP0 ); cannam@39: cannam@39: int FEP = FSP + ( step ); cannam@39: cannam@39: beat = FSP + align; cannam@39: cannam@39: m_beats.push_back( beat ); cannam@39: cannam@39: while( beat + p < FEP ) cannam@39: { cannam@39: beat += p; cannam@39: cannam@39: m_beats.push_back( beat ); cannam@39: } cannam@39: cannam@39: return beat; cannam@39: } cannam@39: cannam@39: cannam@39: cannam@39: vector TempoTrack::process( vector DF, cannam@39: vector *tempoReturn ) cannam@39: { cannam@39: m_dataLength = DF.size(); cannam@39: cannam@39: m_lockedTempo = 0.0; cannam@39: cannam@39: double period = 0.0; cannam@39: int stepFlag = 0; cannam@39: int constFlag = 0; cannam@39: int FSP = 0; cannam@39: int tsig = 0; cannam@39: int lastBeat = 0; cannam@39: cannam@39: vector causalDF; cannam@39: cannam@39: causalDF = DF; cannam@39: cannam@39: //Prepare Causal Extension DFData cannam@39: unsigned int DFCLength = m_dataLength + m_winLength; cannam@39: cannam@39: for( unsigned int j = 0; j < m_winLength; j++ ) cannam@39: { cannam@39: causalDF.push_back( 0 ); cannam@39: } cannam@39: cannam@39: cannam@39: double* RW = new double[ m_lagLength ]; cannam@39: for( unsigned int clear = 0; clear < m_lagLength; clear++){ RW[ clear ] = 0.0;} cannam@39: cannam@39: double* GW = new double[ m_lagLength ]; cannam@39: for(unsigned int clear = 0; clear < m_lagLength; clear++){ GW[ clear ] = 0.0;} cannam@39: cannam@39: double* PW = new double[ m_lagLength ]; cannam@39: for(unsigned clear = 0; clear < m_lagLength; clear++){ PW[ clear ] = 0.0;} cannam@39: cannam@39: m_DFFramer.setSource( &causalDF[0], m_dataLength ); cannam@39: cannam@39: unsigned int TTFrames = m_DFFramer.getMaxNoFrames(); cannam@47: cannam@47: #ifdef DEBUG_TEMPO_TRACK cannam@47: std::cerr << "TTFrames = " << TTFrames << std::endl; cannam@47: #endif cannam@39: cannam@39: double* periodP = new double[ TTFrames ]; cannam@39: for(unsigned clear = 0; clear < TTFrames; clear++){ periodP[ clear ] = 0.0;} cannam@39: cannam@39: double* periodG = new double[ TTFrames ]; cannam@39: for(unsigned clear = 0; clear < TTFrames; clear++){ periodG[ clear ] = 0.0;} cannam@39: cannam@39: double* alignment = new double[ TTFrames ]; cannam@39: for(unsigned clear = 0; clear < TTFrames; clear++){ alignment[ clear ] = 0.0;} cannam@39: cannam@39: m_beats.clear(); cannam@39: cannam@39: createCombFilter( RW, m_lagLength, 0, 0 ); cannam@39: cannam@39: int TTLoopIndex = 0; cannam@39: cannam@39: for( unsigned int i = 0; i < TTFrames; i++ ) cannam@39: { cannam@39: m_DFFramer.getFrame( m_rawDFFrame ); cannam@39: cannam@39: m_DFConditioning->process( m_rawDFFrame, m_smoothDFFrame ); cannam@39: cannam@39: m_correlator.doAutoUnBiased( m_smoothDFFrame, m_frameACF, m_winLength ); cannam@39: cannam@39: periodP[ TTLoopIndex ] = tempoMM( m_frameACF, RW, 0 ); cannam@39: cannam@39: if( GW[ 0 ] != 0 ) cannam@39: { cannam@39: periodG[ TTLoopIndex ] = tempoMM( m_frameACF, GW, tsig ); cannam@39: } cannam@39: else cannam@39: { cannam@39: periodG[ TTLoopIndex ] = 0.0; cannam@39: } cannam@39: cannam@39: stepDetect( periodP, periodG, TTLoopIndex, &stepFlag ); cannam@39: cannam@39: if( stepFlag == 1) cannam@39: { cannam@39: constDetect( periodP, TTLoopIndex, &constFlag ); cannam@39: stepFlag = 0; cannam@39: } cannam@39: else cannam@39: { cannam@39: stepFlag -= 1; cannam@39: } cannam@39: cannam@39: if( stepFlag < 0 ) cannam@39: { cannam@39: stepFlag = 0; cannam@39: } cannam@39: cannam@39: if( constFlag != 0) cannam@39: { cannam@39: tsig = findMeter( m_frameACF, m_winLength, periodP[ TTLoopIndex ] ); cannam@39: cannam@39: createCombFilter( GW, m_lagLength, tsig, periodP[ TTLoopIndex ] ); cannam@39: cannam@39: periodG[ TTLoopIndex ] = tempoMM( m_frameACF, GW, tsig ); cannam@39: cannam@39: period = periodG[ TTLoopIndex ]; cannam@39: cannam@47: #ifdef DEBUG_TEMPO_TRACK cannam@47: std::cerr << "TempoTrack::process: constFlag == " << constFlag << ", TTLoopIndex = " << TTLoopIndex << ", period from periodG = " << period << std::endl; cannam@47: #endif cannam@46: cannam@39: createPhaseExtractor( PW, m_winLength, period, FSP, 0 ); cannam@39: cannam@39: constFlag = 0; cannam@39: cannam@39: } cannam@39: else cannam@39: { cannam@39: if( GW[ 0 ] != 0 ) cannam@39: { cannam@39: period = periodG[ TTLoopIndex ]; cannam@46: cannam@47: #ifdef DEBUG_TEMPO_TRACK cannam@47: std::cerr << "TempoTrack::process: GW[0] == " << GW[0] << ", TTLoopIndex = " << TTLoopIndex << ", period from periodG = " << period << std::endl; cannam@47: #endif cannam@46: cannam@46: if (period > 10000) { cannam@47: std::cerr << "TempoTrack::process: WARNING! Highly implausible period value " << period << "!" << std::endl; cannam@46: std::cerr << "periodG contains (of " << TTFrames << " frames): " << std::endl; cannam@46: for (int i = 0; i < TTLoopIndex + 3 && i < TTFrames; ++i) { cannam@46: std::cerr << i << " -> " << periodG[i] << std::endl; cannam@46: } cannam@46: std::cerr << "periodP contains (of " << TTFrames << " frames): " << std::endl; cannam@46: for (int i = 0; i < TTLoopIndex + 3 && i < TTFrames; ++i) { cannam@46: std::cerr << i << " -> " << periodP[i] << std::endl; cannam@46: } cannam@47: period = 5168 / 120; cannam@46: } cannam@46: cannam@39: createPhaseExtractor( PW, m_winLength, period, FSP, lastBeat ); cannam@39: cannam@39: } cannam@39: else cannam@39: { cannam@39: period = periodP[ TTLoopIndex ]; cannam@46: cannam@47: #ifdef DEBUG_TEMPO_TRACK cannam@47: std::cerr << "TempoTrack::process: GW[0] == " << GW[0] << ", TTLoopIndex = " << TTLoopIndex << ", period from periodP = " << period << std::endl; cannam@47: #endif cannam@46: cannam@39: createPhaseExtractor( PW, m_winLength, period, FSP, 0 ); cannam@39: } cannam@39: } cannam@39: cannam@39: alignment[ TTLoopIndex ] = phaseMM( m_rawDFFrame, PW, m_winLength, period ); cannam@39: cannam@39: lastBeat = beatPredict(FSP, alignment[ TTLoopIndex ], period, m_lagLength ); cannam@39: cannam@39: FSP += (m_lagLength); cannam@39: cannam@39: if (tempoReturn) tempoReturn->push_back(m_lockedTempo); cannam@39: cannam@39: TTLoopIndex++; cannam@39: } cannam@39: cannam@39: cannam@39: delete [] periodP; cannam@39: delete [] periodG; cannam@39: delete [] alignment; cannam@39: cannam@39: delete [] RW; cannam@39: delete [] GW; cannam@39: delete [] PW; cannam@39: cannam@39: return m_beats; cannam@39: }