Chris@137: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ Chris@137: Chris@137: #include "Resampler.h" Chris@137: Chris@137: #include "qm-dsp/maths/MathUtilities.h" Chris@137: #include "qm-dsp/base/KaiserWindow.h" Chris@137: #include "qm-dsp/base/SincWindow.h" Chris@137: Chris@137: #include Chris@138: #include Chris@138: Chris@138: using std::vector; Chris@137: Chris@141: //#define DEBUG_RESAMPLER 1 Chris@141: Chris@137: Resampler::Resampler(int sourceRate, int targetRate) : Chris@137: m_sourceRate(sourceRate), Chris@137: m_targetRate(targetRate) Chris@137: { Chris@137: initialise(); Chris@137: } Chris@137: Chris@137: Resampler::~Resampler() Chris@137: { Chris@137: delete[] m_phaseData; Chris@137: } Chris@137: Chris@137: void Chris@137: Resampler::initialise() Chris@137: { Chris@137: int higher = std::max(m_sourceRate, m_targetRate); Chris@137: int lower = std::min(m_sourceRate, m_targetRate); Chris@137: Chris@137: m_gcd = MathUtilities::gcd(lower, higher); Chris@137: Chris@137: int peakToPole = higher / m_gcd; Chris@137: Chris@137: KaiserWindow::Parameters params = Chris@137: KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole); Chris@137: Chris@137: params.length = Chris@137: (params.length % 2 == 0 ? params.length + 1 : params.length); Chris@137: Chris@137: m_filterLength = params.length; Chris@137: Chris@143: std::cerr << "making filter... "; Chris@137: KaiserWindow kw(params); Chris@137: SincWindow sw(m_filterLength, peakToPole * 2); Chris@143: std::cerr << "done" << std::endl; Chris@137: Chris@137: double *filter = new double[m_filterLength]; Chris@137: for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0; Chris@137: sw.cut(filter); Chris@137: kw.cut(filter); Chris@137: Chris@137: int inputSpacing = m_targetRate / m_gcd; Chris@137: int outputSpacing = m_sourceRate / m_gcd; Chris@137: Chris@141: #ifdef DEBUG_RESAMPLER Chris@141: std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate Chris@141: << ": inputSpacing " << inputSpacing << ", outputSpacing " Chris@141: << outputSpacing << ": filter length " << m_filterLength Chris@141: << std::endl; Chris@141: #endif Chris@137: Chris@137: m_phaseData = new Phase[inputSpacing]; Chris@137: Chris@137: for (int phase = 0; phase < inputSpacing; ++phase) { Chris@137: Chris@137: Phase p; Chris@137: Chris@137: p.nextPhase = phase - outputSpacing; Chris@137: while (p.nextPhase < 0) p.nextPhase += inputSpacing; Chris@137: p.nextPhase %= inputSpacing; Chris@137: Chris@141: p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase)) Chris@141: / inputSpacing)); Chris@137: Chris@141: int filtZipLength = int(ceil(double(m_filterLength - phase) Chris@141: / inputSpacing)); Chris@137: for (int i = 0; i < filtZipLength; ++i) { Chris@137: p.filter.push_back(filter[i * inputSpacing + phase]); Chris@137: } Chris@137: Chris@137: m_phaseData[phase] = p; Chris@137: } Chris@137: Chris@141: #ifdef DEBUG_RESAMPLER Chris@141: for (int phase = 0; phase < inputSpacing; ++phase) { Chris@141: std::cerr << "filter for phase " << phase << " of " << inputSpacing << " (with length " << m_phaseData[phase].filter.size() << "):"; Chris@141: for (int i = 0; i < m_phaseData[phase].filter.size(); ++i) { Chris@141: if (i % 4 == 0) { Chris@141: std::cerr << std::endl << i << ": "; Chris@141: } Chris@141: float v = m_phaseData[phase].filter[i]; Chris@141: if (v == 1) { Chris@141: std::cerr << " *** " << v << " *** "; Chris@141: } else { Chris@141: std::cerr << v << " "; Chris@141: } Chris@141: } Chris@141: std::cerr << std::endl; Chris@141: } Chris@141: #endif Chris@141: Chris@137: delete[] filter; Chris@137: Chris@137: // The May implementation of this uses a pull model -- we ask the Chris@137: // resampler for a certain number of output samples, and it asks Chris@137: // its source stream for as many as it needs to calculate Chris@137: // those. This means (among other things) that the source stream Chris@137: // can be asked for enough samples up-front to fill the buffer Chris@137: // before the first output sample is generated. Chris@137: // Chris@137: // In this implementation we're using a push model in which a Chris@137: // certain number of source samples is provided and we're asked Chris@137: // for as many output samples as that makes available. But we Chris@137: // can't return any samples from the beginning until half the Chris@137: // filter length has been provided as input. This means we must Chris@137: // either return a very variable number of samples (none at all Chris@137: // until the filter fills, then half the filter length at once) or Chris@137: // else have a lengthy declared latency on the output. We do the Chris@137: // latter. (What do other implementations do?) Chris@137: Chris@141: m_phase = (m_filterLength/2) % inputSpacing; Chris@141: Chris@141: m_buffer = vector(m_phaseData[0].filter.size(), 0); Chris@141: Chris@141: m_latency = Chris@141: ((m_buffer.size() * inputSpacing) - (m_filterLength/2)) / outputSpacing Chris@141: + m_phase; Chris@141: Chris@141: #ifdef DEBUG_RESAMPLER Chris@141: std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")" Chris@141: << ", latency " << m_latency << std::endl; Chris@141: #endif Chris@137: } Chris@137: Chris@137: double Chris@141: Resampler::reconstructOne() Chris@137: { Chris@137: Phase &pd = m_phaseData[m_phase]; Chris@141: double v = 0.0; Chris@137: int n = pd.filter.size(); Chris@143: const double *buf = m_buffer.data(); Chris@143: const double *filt = pd.filter.data(); Chris@137: for (int i = 0; i < n; ++i) { Chris@143: v += buf[i] * filt[i]; //!!! gcc can't vectorize: why? Chris@137: } Chris@139: m_buffer = vector(m_buffer.begin() + pd.drop, m_buffer.end()); Chris@141: m_phase = pd.nextPhase; Chris@137: return v; Chris@137: } Chris@137: Chris@137: int Chris@141: Resampler::process(const double *src, double *dst, int n) Chris@137: { Chris@141: for (int i = 0; i < n; ++i) { Chris@141: m_buffer.push_back(src[i]); Chris@137: } Chris@137: Chris@141: int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate)); Chris@141: int outidx = 0; Chris@139: Chris@141: #ifdef DEBUG_RESAMPLER Chris@141: std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl; Chris@141: #endif Chris@141: Chris@142: double scaleFactor = 1.0; Chris@142: if (m_targetRate < m_sourceRate) { Chris@142: scaleFactor = double(m_targetRate) / double(m_sourceRate); Chris@142: } Chris@142: Chris@143: std::cerr << "maxout = " << maxout << std::endl; Chris@143: Chris@141: while (outidx < maxout && Chris@141: m_buffer.size() >= m_phaseData[m_phase].filter.size()) { Chris@142: dst[outidx] = scaleFactor * reconstructOne(); Chris@141: outidx++; Chris@139: } Chris@141: Chris@141: return outidx; Chris@137: } Chris@141: Chris@138: std::vector Chris@138: Resampler::resample(int sourceRate, int targetRate, const double *data, int n) Chris@138: { Chris@138: Resampler r(sourceRate, targetRate); Chris@138: Chris@138: int latency = r.getLatency(); Chris@138: Chris@143: // latency is the output latency. We need to provide enough Chris@143: // padding input samples at the end of input to guarantee at Chris@143: // *least* the latency's worth of output samples. that is, Chris@143: Chris@143: int inputPad = int(ceil(double(latency * sourceRate) / targetRate)); Chris@143: Chris@143: std::cerr << "latency = " << latency << ", inputPad = " << inputPad << std::endl; Chris@143: Chris@143: // that means we are providing this much input in total: Chris@143: Chris@143: int n1 = n + inputPad; Chris@143: Chris@143: // and obtaining this much output in total: Chris@143: Chris@143: int m1 = int(ceil(double(n1 * targetRate) / sourceRate)); Chris@143: Chris@143: // in order to return this much output to the user: Chris@143: Chris@141: int m = int(ceil(double(n * targetRate) / sourceRate)); Chris@143: Chris@143: std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl; Chris@138: Chris@138: vector pad(n1 - n, 0.0); Chris@143: vector out(m1 + 1, 0.0); Chris@138: Chris@138: int got = r.process(data, out.data(), n); Chris@138: got += r.process(pad.data(), out.data() + got, pad.size()); Chris@138: Chris@141: #ifdef DEBUG_RESAMPLER Chris@141: std::cerr << "resample: " << n << " in, " << got << " out" << std::endl; Chris@141: for (int i = 0; i < got; ++i) { Chris@141: if (i % 5 == 0) std::cout << std::endl << i << "... "; Chris@141: std::cout << (float) out[i] << " "; Chris@141: } Chris@141: std::cout << std::endl; Chris@141: #endif Chris@141: Chris@143: int toReturn = got - latency; Chris@143: if (toReturn > m) toReturn = m; Chris@143: Chris@143: return vector(out.begin() + latency, Chris@143: out.begin() + latency + toReturn); Chris@138: } Chris@138: