Chris@202: /* dtrtri.f -- translated by f2c (version 20061008). Chris@202: You must link the resulting object file with libf2c: Chris@202: on Microsoft Windows system, link with libf2c.lib; Chris@202: on Linux or Unix systems, link with .../path/to/libf2c.a -lm Chris@202: or, if you install libf2c.a in a standard place, with -lf2c -lm Chris@202: -- in that order, at the end of the command line, as in Chris@202: cc *.o -lf2c -lm Chris@202: Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., Chris@202: Chris@202: http://www.netlib.org/f2c/libf2c.zip Chris@202: */ Chris@202: Chris@202: #include "f2c.h" Chris@202: #include "blaswrap.h" Chris@202: Chris@202: /* Table of constant values */ Chris@202: Chris@202: static integer c__1 = 1; Chris@202: static integer c_n1 = -1; Chris@202: static integer c__2 = 2; Chris@202: static doublereal c_b18 = 1.; Chris@202: static doublereal c_b22 = -1.; Chris@202: Chris@202: /* Subroutine */ int dtrtri_(char *uplo, char *diag, integer *n, doublereal * Chris@202: a, integer *lda, integer *info) Chris@202: { Chris@202: /* System generated locals */ Chris@202: address a__1[2]; Chris@202: integer a_dim1, a_offset, i__1, i__2[2], i__3, i__4, i__5; Chris@202: char ch__1[2]; Chris@202: Chris@202: /* Builtin functions */ Chris@202: /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); Chris@202: Chris@202: /* Local variables */ Chris@202: integer j, jb, nb, nn; Chris@202: extern logical lsame_(char *, char *); Chris@202: extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, Chris@202: integer *, integer *, doublereal *, doublereal *, integer *, Chris@202: doublereal *, integer *), dtrsm_( Chris@202: char *, char *, char *, char *, integer *, integer *, doublereal * Chris@202: , doublereal *, integer *, doublereal *, integer *); Chris@202: logical upper; Chris@202: extern /* Subroutine */ int dtrti2_(char *, char *, integer *, doublereal Chris@202: *, integer *, integer *), xerbla_(char *, integer Chris@202: *); Chris@202: extern integer ilaenv_(integer *, char *, char *, integer *, integer *, Chris@202: integer *, integer *); Chris@202: logical nounit; Chris@202: Chris@202: Chris@202: /* -- LAPACK routine (version 3.2) -- */ Chris@202: /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ Chris@202: /* November 2006 */ Chris@202: Chris@202: /* .. Scalar Arguments .. */ Chris@202: /* .. */ Chris@202: /* .. Array Arguments .. */ Chris@202: /* .. */ Chris@202: Chris@202: /* Purpose */ Chris@202: /* ======= */ Chris@202: Chris@202: /* DTRTRI computes the inverse of a real upper or lower triangular */ Chris@202: /* matrix A. */ Chris@202: Chris@202: /* This is the Level 3 BLAS version of the algorithm. */ Chris@202: Chris@202: /* Arguments */ Chris@202: /* ========= */ Chris@202: Chris@202: /* UPLO (input) CHARACTER*1 */ Chris@202: /* = 'U': A is upper triangular; */ Chris@202: /* = 'L': A is lower triangular. */ Chris@202: Chris@202: /* DIAG (input) CHARACTER*1 */ Chris@202: /* = 'N': A is non-unit triangular; */ Chris@202: /* = 'U': A is unit triangular. */ Chris@202: Chris@202: /* N (input) INTEGER */ Chris@202: /* The order of the matrix A. N >= 0. */ Chris@202: Chris@202: /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ Chris@202: /* On entry, the triangular matrix A. If UPLO = 'U', the */ Chris@202: /* leading N-by-N upper triangular part of the array A contains */ Chris@202: /* the upper triangular matrix, and the strictly lower */ Chris@202: /* triangular part of A is not referenced. If UPLO = 'L', the */ Chris@202: /* leading N-by-N lower triangular part of the array A contains */ Chris@202: /* the lower triangular matrix, and the strictly upper */ Chris@202: /* triangular part of A is not referenced. If DIAG = 'U', the */ Chris@202: /* diagonal elements of A are also not referenced and are */ Chris@202: /* assumed to be 1. */ Chris@202: /* On exit, the (triangular) inverse of the original matrix, in */ Chris@202: /* the same storage format. */ Chris@202: Chris@202: /* LDA (input) INTEGER */ Chris@202: /* The leading dimension of the array A. LDA >= max(1,N). */ Chris@202: Chris@202: /* INFO (output) INTEGER */ Chris@202: /* = 0: successful exit */ Chris@202: /* < 0: if INFO = -i, the i-th argument had an illegal value */ Chris@202: /* > 0: if INFO = i, A(i,i) is exactly zero. The triangular */ Chris@202: /* matrix is singular and its inverse can not be computed. */ Chris@202: Chris@202: /* ===================================================================== */ Chris@202: Chris@202: /* .. Parameters .. */ Chris@202: /* .. */ Chris@202: /* .. Local Scalars .. */ Chris@202: /* .. */ Chris@202: /* .. External Functions .. */ Chris@202: /* .. */ Chris@202: /* .. External Subroutines .. */ Chris@202: /* .. */ Chris@202: /* .. Intrinsic Functions .. */ Chris@202: /* .. */ Chris@202: /* .. Executable Statements .. */ Chris@202: Chris@202: /* Test the input parameters. */ Chris@202: Chris@202: /* Parameter adjustments */ Chris@202: a_dim1 = *lda; Chris@202: a_offset = 1 + a_dim1; Chris@202: a -= a_offset; Chris@202: Chris@202: /* Function Body */ Chris@202: *info = 0; Chris@202: upper = lsame_(uplo, "U"); Chris@202: nounit = lsame_(diag, "N"); Chris@202: if (! upper && ! lsame_(uplo, "L")) { Chris@202: *info = -1; Chris@202: } else if (! nounit && ! lsame_(diag, "U")) { Chris@202: *info = -2; Chris@202: } else if (*n < 0) { Chris@202: *info = -3; Chris@202: } else if (*lda < max(1,*n)) { Chris@202: *info = -5; Chris@202: } Chris@202: if (*info != 0) { Chris@202: i__1 = -(*info); Chris@202: xerbla_("DTRTRI", &i__1); Chris@202: return 0; Chris@202: } Chris@202: Chris@202: /* Quick return if possible */ Chris@202: Chris@202: if (*n == 0) { Chris@202: return 0; Chris@202: } Chris@202: Chris@202: /* Check for singularity if non-unit. */ Chris@202: Chris@202: if (nounit) { Chris@202: i__1 = *n; Chris@202: for (*info = 1; *info <= i__1; ++(*info)) { Chris@202: if (a[*info + *info * a_dim1] == 0.) { Chris@202: return 0; Chris@202: } Chris@202: /* L10: */ Chris@202: } Chris@202: *info = 0; Chris@202: } Chris@202: Chris@202: /* Determine the block size for this environment. */ Chris@202: Chris@202: /* Writing concatenation */ Chris@202: i__2[0] = 1, a__1[0] = uplo; Chris@202: i__2[1] = 1, a__1[1] = diag; Chris@202: s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2); Chris@202: nb = ilaenv_(&c__1, "DTRTRI", ch__1, n, &c_n1, &c_n1, &c_n1); Chris@202: if (nb <= 1 || nb >= *n) { Chris@202: Chris@202: /* Use unblocked code */ Chris@202: Chris@202: dtrti2_(uplo, diag, n, &a[a_offset], lda, info); Chris@202: } else { Chris@202: Chris@202: /* Use blocked code */ Chris@202: Chris@202: if (upper) { Chris@202: Chris@202: /* Compute inverse of upper triangular matrix */ Chris@202: Chris@202: i__1 = *n; Chris@202: i__3 = nb; Chris@202: for (j = 1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) { Chris@202: /* Computing MIN */ Chris@202: i__4 = nb, i__5 = *n - j + 1; Chris@202: jb = min(i__4,i__5); Chris@202: Chris@202: /* Compute rows 1:j-1 of current block column */ Chris@202: Chris@202: i__4 = j - 1; Chris@202: dtrmm_("Left", "Upper", "No transpose", diag, &i__4, &jb, & Chris@202: c_b18, &a[a_offset], lda, &a[j * a_dim1 + 1], lda); Chris@202: i__4 = j - 1; Chris@202: dtrsm_("Right", "Upper", "No transpose", diag, &i__4, &jb, & Chris@202: c_b22, &a[j + j * a_dim1], lda, &a[j * a_dim1 + 1], Chris@202: lda); Chris@202: Chris@202: /* Compute inverse of current diagonal block */ Chris@202: Chris@202: dtrti2_("Upper", diag, &jb, &a[j + j * a_dim1], lda, info); Chris@202: /* L20: */ Chris@202: } Chris@202: } else { Chris@202: Chris@202: /* Compute inverse of lower triangular matrix */ Chris@202: Chris@202: nn = (*n - 1) / nb * nb + 1; Chris@202: i__3 = -nb; Chris@202: for (j = nn; i__3 < 0 ? j >= 1 : j <= 1; j += i__3) { Chris@202: /* Computing MIN */ Chris@202: i__1 = nb, i__4 = *n - j + 1; Chris@202: jb = min(i__1,i__4); Chris@202: if (j + jb <= *n) { Chris@202: Chris@202: /* Compute rows j+jb:n of current block column */ Chris@202: Chris@202: i__1 = *n - j - jb + 1; Chris@202: dtrmm_("Left", "Lower", "No transpose", diag, &i__1, &jb, Chris@202: &c_b18, &a[j + jb + (j + jb) * a_dim1], lda, &a[j Chris@202: + jb + j * a_dim1], lda); Chris@202: i__1 = *n - j - jb + 1; Chris@202: dtrsm_("Right", "Lower", "No transpose", diag, &i__1, &jb, Chris@202: &c_b22, &a[j + j * a_dim1], lda, &a[j + jb + j * Chris@202: a_dim1], lda); Chris@202: } Chris@202: Chris@202: /* Compute inverse of current diagonal block */ Chris@202: Chris@202: dtrti2_("Lower", diag, &jb, &a[j + j * a_dim1], lda, info); Chris@202: /* L30: */ Chris@202: } Chris@202: } Chris@202: } Chris@202: Chris@202: return 0; Chris@202: Chris@202: /* End of DTRTRI */ Chris@202: Chris@202: } /* dtrtri_ */